MilliporeSigma
Search Within

924490

Applied Filters:
Keyword:'924490'
Showing 1-7 of 7 results for "924490" within Papers
Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels.
Duan, et al.
Acta Biomaterialia, 9, 7640-7650 (2018)
Influence of Three-Dimensional Hyaluronic Acid Microenvironments on Mesenchymal Stem Cell Chondrogenesis
Chung and Burdick
Tissue Engineering: Part A, 15(2) (2009)
Judy Yeh et al.
Biomaterials, 27(31), 5391-5398 (2006-07-11)
Encapsulation of mammalian cells within hydrogels has great utility for a variety of applications ranging from tissue engineering to cell-based assays. In this work, we present a technique to encapsulate live cells in three-dimensional (3D) microscale hydrogels (microgels) of controlled
Bin Duan et al.
Acta biomaterialia, 9(8), 7640-7650 (2013-05-08)
Bioactive and biodegradable hydrogels that mimic the extracellular matrix and regulate valve interstitial cells (VIC) behavior are of great interest as three-dimensional (3-D) model systems for understanding mechanisms of valvular heart disease pathogenesis in vitro and the basis for regenerative
Photocrosslinkable Hyaluronan-Gelatin Hydrogels for Two-Step Bioprinting
Skardal, et al.
Tissue Engineering: Part A, 16 (8) (2010)
Micromolding of shape-controlled, harvestable cell-laden hydrogels.
Yeh, et al.
Biomaterials, 27, 5391-5398 (2007)
Liming Bian et al.
Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10117-10122 (2013-06-05)
Methacrylated hyaluronic acid (HA) hydrogels provide a backbone polymer with which mesenchymal stem cells (MSCs) can interact through several cell surface receptors that are expressed by MSCs, including CD44 and CD168. Previous studies showed that this 3D hydrogel environment supports
Page 1 of 1