MilliporeSigma
  • Uniaxial stretching and properties of fully biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends.

Uniaxial stretching and properties of fully biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends.

International journal of biological macromolecules (2019-02-08)
Yi Li, Changyu Han, Yancun Yu, Dexin Huang
ABSTRACT

In this work, fully biodegradable poly (lactic acid) (PLA)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) blends of various compositions were uniaxially stretched at different stretch ratios above the glass transition temperature (Tg) of PLA. These stretched blends exhibited a closed microvoid structure, as evaluated by scanning electron microscopy. Differential scanning calorimetry and wide-angle X-ray diffraction analyses verified that stretching-induced crystallization in the α-form could be achieved in the PLA matrix. This hierarchical structure could improve the multifunctional performance of PLA blends. The density of drawn blends with a P(3HB-co-4HB) content of 30 wt% and stretch ratio of 6 was reduced by 20% as compared to neat PLA. The excellent combination of strength, modulus, and ductility of drawn blends with a P(3HB-co-4HB) content of 10 wt% and stretch ratio of 6 was demonstrated; compared to neat PLA, these parameters increased by 300%, 320%, and 317%, respectively in breaking strength, modulus, and elongation at break (172.2 MPa, 4200 MPa, and 18.4%), respectively. Meanwhile, control over the degradation rate and thermomechanical-property improvement was achieved by adjusting the stretch ratio and/or blend composition. In practical terms, this processing technique provides a new way to manufacture lightweight and high-performance microvoid-containing biopolymers.