Skip to Content
MilliporeSigma
  • Histone chaperone exploits intrinsic disorder to switch acetylation specificity.

Histone chaperone exploits intrinsic disorder to switch acetylation specificity.

Nature communications (2019-08-08)
Nataliya Danilenko, Lukas Lercher, John Kirkpatrick, Frank Gabel, Luca Codutti, Teresa Carlomagno
ABSTRACT

Histones, the principal protein components of chromatin, contain long disordered sequences, which are extensively post-translationally modified. Although histone chaperones are known to control both the activity and specificity of histone-modifying enzymes, the mechanisms promoting modification of highly disordered substrates, such as lysine-acetylation within the N-terminal tail of histone H3, are not understood. Here, to understand how histone chaperones Asf1 and Vps75 together promote H3 K9-acetylation, we establish the solution structural model of the acetyltransferase Rtt109 in complex with Asf1 and Vps75 and the histone dimer H3:H4. We show that Vps75 promotes K9-acetylation by engaging the H3 N-terminal tail in fuzzy electrostatic interactions with its disordered C-terminal domain, thereby confining the H3 tail to a wide central cavity faced by the Rtt109 active site. These fuzzy interactions between disordered domains achieve localization of lysine residues in the H3 tail to the catalytic site with minimal loss of entropy, and may represent a common mechanism of enzymatic reactions involving highly disordered substrates.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Rabbit IgG (whole molecule)–Alkaline Phosphatase antibody produced in goat, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-Acetyl-Histone H3 (Lys56) antibody, Rabbit monoclonal, recombinant, expressed in HEK 293 cells, clone RM179, purified immunoglobulin