- Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes.
Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes.
In this research, degradation of the antibiotic sulfamethoxazole (SMX) was studied using electrochemical reduction and oxidation in single pass, flow-through mode using porous titanium suboxide (Ti4O7) reactive electrochemical membranes (REMs) and Pd-Cu doped Ti4O7 REMs (Pd-Cu/Ti4O7 REMs). Electrochemical reduction of SMX increased from 3.8 ± 0.3% for the Ti4O7 REM to 96.1 ± 3.9% for the Pd-Cu/Ti4O7 REM at -1.14 V/SHE and at a permeate flux of 300 L m-2 h-1 (LMH) (liquid residence time: ∼1.8 s). By contrast, electrochemical oxidation using Ti4O7 REMs achieved 95.7 ± 1.0% removal of SMX at 2.03 V/SHE and a permeate flux of 300 LMH (liquid residence time: ∼9.0 s) without the catalyst addition. We developed a reactive transport mathematical model and calibrated it to the SMX experimental data. The calibrated model predicted SMX permeate concentrations at fixed potentials and as a function of permeate flux. Based on products from SMX reduction, we proposed that SMX was reduced by a hydrogen atom transfer reaction that was mediated by the Pd-Cu/Ti4O7 REM. Toxicity tests indicated that electrochemical oxidation/reduction lowered solution toxicity. The results of this work indicate that a tandem electrochemical reduction/oxidation approach using the REM-based technology is a potential treatment strategy for sulfonamide-contaminated pharmaceutical wastewater.