- Characterization of a Knock-In Mouse Model with a Huntingtin Exon 1 Deletion.
Characterization of a Knock-In Mouse Model with a Huntingtin Exon 1 Deletion.
The Huntingtin (HTT) N-terminal domains encoded by Huntingtin's (HTT) exon 1 consist of an N17 domain, the polyglutamine (polyQ) stretch and a proline-rich region (PRR). These domains are conserved in mammals and have been hypothesized to modulate HTT's functions in the developing and adult CNS, including DNA damage repair and autophagy. This study longitudinally characterizes the in vivo consequences of deleting the murine Htt N-terminal domains encoded by Htt exon 1. Knock-in mice with a deletion of Htt exon 1 sequences (HttΔE1) were generated and bred into the C57BL/6J congenic genetic background. Their behavior, DNA damage response, basal autophagy, and glutamatergic synapse numbers were evaluated. Progeny from HttΔE1/+ intercrosses are born at the expected Mendelian frequency but with a distorted male to female ratio in both the HttΔE1/ΔE1 and Htt+/+ offspring. HttΔE1/ΔE1 adults exhibit a modest deficit in accelerating rotarod performance, and an earlier increase in cortical and striatal DNA damage with elevated neuronal pan-nuclear 53bp1 levels compared to Htt+/+ mice. However, a normal response to induced DNA damage, normal levels of basal autophagy markers, and no significant differences in corticocortical, corticostriatal, thalamocortical, or thalamostriatal synapses numbers were observed compared to controls. Our results suggest that deletion of the Htt N-terminus encoded by the Htt exon 1 does not affect Htt's critical role during embryogenesis, but instead, may have a modest effect on certain motor tasks, basal levels of DNA damage in the brain, and Htt function in the testis.