MilliporeSigma
  • Hypercrosslinked large surface area porous polymer monoliths for hydrophilic interaction liquid chromatography of small molecules featuring zwitterionic functionalities attached to gold nanoparticles held in layered structure.

Hypercrosslinked large surface area porous polymer monoliths for hydrophilic interaction liquid chromatography of small molecules featuring zwitterionic functionalities attached to gold nanoparticles held in layered structure.

Analytical chemistry (2012-09-25)
Yongqin Lv, Zhixing Lin, Frantisek Svec
ABSTRACT

A novel approach to porous polymer monoliths hypercrosslinked to obtain large surface areas and modified with zwitterionic functionalities through the attachment of gold nanoparticles in a layered architecture has been developed. The capillary columns were used for the separation of small molecules in hydrophilic interaction liquid chromatography mode. First, a monolith with a very large surface area of 430 m(2)/g was prepared by hypercrosslinking from a generic poly(4-methylstyrene-co-vinylbenzyl chloride-co-divinylbenzene) monolith via a Friedel-Crafts reaction catalyzed with iron chloride. Free radical bromination then provided this hypercrosslinked monolith with 5.7 at % Br that further reacted with cystamine under microwave irradiation, resulting in a product containing 3.8 at % sulfur. Clipping the disulfide bonds with tris(2-carboxylethyl) phosphine liberated the desired thiol groups that bind the first layer of gold nanoparticles. These immobilized nanoparticles were an intermediate ligand enabling the attachment of polyethyleneimine as a spacer followed by immobilization of the second layer of gold nanoparticles which were eventually functionalized with zwitterionic cysteine. This layered architecture, prepared using 10 nm nanoparticles, contains 17.2 wt % Au, more than twice than that found in the first layer alone. Chromatographic performance of these hydrophilic monolithic columns was demonstrated with the separation of mixtures of nucleosides and peptides in hydrophilic interaction chromatography (HILIC) mode. A column efficiency of 51,000 plates/m was achieved for retained analyte cytosine.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cystamine dihydrochloride, 96%
Sigma-Aldrich
Cystamine dihydrochloride, BioXtra
Sigma-Aldrich
Cystamine dihydrochloride, purum, ≥98.0% (AT)