MilliporeSigma
  • Change in structural morphology on addition of ZnO and its effect on fluorescence of Yb³⁺/Er³⁺ doped Y₂O₃.

Change in structural morphology on addition of ZnO and its effect on fluorescence of Yb³⁺/Er³⁺ doped Y₂O₃.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy (2012-12-25)
R V Yadav, R K Verma, G Kaur, S B Rai
ABSTRACT

Yb(3+)/Er(3+) codoped Y(2)O(3) phosphor and its composite with ZnO have been synthesized by combustion method. Morphology of the materials has been investigated using X-ray diffraction pattern (XRD) and scanning electron microscopy (SEM) techniques. XRD confirms the constituents as Y(2)O(3) and ZnO, with average crystallite size of 112 nm. On addition of ZnO, a small shifting in XRD pattern of Y(2)O(3) is observed. SEM pattern suggests that the average particle size lies in micro-range (0.5 μm). A dumble like structure is observed for hybrid material on annealing at 1473 K. A strong green (525, 546 nm) with weak blue (411 nm) and red (657 nm) emissions through upconversion has been observed from the phosphor on excitation with 976 nm diode laser. The observed emissions involve (2)H(9/2)→(4)I(15/2), (2)H(11/2)→(4)I(15/2), (4)S(3/2)→(4)I(15/2) and (4)F(9/2)→(4)I(15/2) electronic transitions, respectively. The upconversion process has been confirmed by power dependence measurements and its slope value was found to be 1.85, 1.72 for green and red emissions, respectively. On addition of ZnO, the intensity of these emissions is enhanced several times. The reason behind the enhancement is discussed with the help of the emitting level lifetime. An interesting dual mode property (upconversion and downconversion) to the same material has been observed on excitation with 532 nm laser source.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Yttrium(III) oxide, nanopowder, <50 nm particle size
Sigma-Aldrich
Ytterbium, powder, ≥99.9% trace rare earth metals basis
Sigma-Aldrich
Yttrium(III) oxide, 99.99% trace metals basis
Sigma-Aldrich
Yttrium(III) oxide, 99.999% trace metals basis
Sigma-Aldrich
Yttrium(III) oxide, dispersion, 10 wt. % in isopropanol, nanoparticles, <100 nm (DLS), ≥99.9% trace metals basis