MilliporeSigma
  • Artificial sweeteners induce glucose intolerance by altering the gut microbiota.

Artificial sweeteners induce glucose intolerance by altering the gut microbiota.

Nature (2014-09-19)
Jotham Suez, Tal Korem, David Zeevi, Gili Zilberman-Schapira, Christoph A Thaiss, Ori Maza, David Israeli, Niv Zmora, Shlomit Gilad, Adina Weinberger, Yael Kuperman, Alon Harmelin, Ilana Kolodkin-Gal, Hagit Shapiro, Zamir Halpern, Eran Segal, Eran Elinav
ABSTRACT

Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Millipore
Sucrose, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Sucralose, ≥98.0% (HPLC)
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
USP
Sucralose, United States Pharmacopeia (USP) Reference Standard
USP
Dextrose, United States Pharmacopeia (USP) Reference Standard
Sucralose, European Pharmacopoeia (EP) Reference Standard
Saccharin, European Pharmacopoeia (EP) Reference Standard
USP
Saccharin, United States Pharmacopeia (USP) Reference Standard
Supelco
D-(+)-Glucose solution, 1 mg/mL in 0.1% benzoic acid, standard for enzymatic assay kits GAGO20, GAHK20, STA20, analytical standard
Sigma-Aldrich
D-(+)-Glucose solution, 45% in H2O, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium propionate, ≥99.0%
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, meets USP testing specifications
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20