Skip to Content
MilliporeSigma
  • Identification of the cellular mechanisms that modulate trafficking of frizzled family receptor 4 (FZD4) missense mutants associated with familial exudative vitreoretinopathy.

Identification of the cellular mechanisms that modulate trafficking of frizzled family receptor 4 (FZD4) missense mutants associated with familial exudative vitreoretinopathy.

Investigative ophthalmology & visual science (2014-04-20)
Reham M Milhem, Salma Ben-Salem, Lihadh Al-Gazali, Bassam R Ali
ABSTRACT

Fifteen missense mutations in the frizzled family receptor 4 (FZD4) reported to cause familial exudative vitreoretinopathy (FEVR) were evaluated to establish the pathological cellular mechanism of disease and to explore novel therapeutic strategies. The mutations were generated by site-directed mutagenesis and expressed in HeLa and COS-7 cell lines. Confocal fluorescence microscopy and N-glycosylation profiling were used to observe the subcellular localization of the mutant proteins relative to wild-type (WT). Polyubiquitination studies were used to establish the involvement of the proteasome. Culturing at reduced temperatures and incubation in the presence of chemical compounds were used to enhance mutant protein processing and exit out of the endoplasmic reticulum (ER). Confocal fluorescence microscopy of the mutants showed three distinct subcellular localizations, namely, a plasma membrane pattern, an ER pattern, and a mixed pattern to both compartments. Confocal fluorescence microscopy and N-glycosylation profiling established the predominant ER localization of P33S, G36N, H69Y, M105T, M105V, C181R, C204R, C204Y, and G488D mutants. Coexpression of these mutants with WT FZD4 showed the inability of the mutants to trap WT FZD4. Culturing the expressing cells at reduced temperatures or in the presence of chemical agents directed at ameliorating protein misfolding resulted in partial rescue of trafficking defects observed for M105T and C204Y mutants. Defective trafficking resulting in haploinsufficiency is a major cellular mechanism for several missense FEVR-causing FZD4 mutants. Our findings indicate that this trafficking defect might be correctable for some mutants, which may offer opportunities for the development of novel therapeutics approaches for this condition.

MATERIALS
Product Number
Brand
Product Description

Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
2-Mercaptoethanol, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Anti-Rabbit IgG (whole molecule)–Peroxidase antibody produced in goat, affinity isolated antibody
Sigma-Aldrich
Anti-Mouse IgG (whole molecule)–Peroxidase antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
2-Mercaptoethanol, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Millipore
ANTI-FLAG® antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
2-Mercaptoethanol, SAJ special grade, ≥99.0%
Sigma-Aldrich
SIGMAFAST Protease Inhibitor Cocktail Tablets, EDTA-Free, for use in purification of Histidine-tagged proteins
Supelco
2-Mercaptoethanol, for HPLC derivatization, LiChropur, ≥99.0% (GC)
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Fluorescein (free acid), Dye content 95 %
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Thapsigargin, ≥98% (HPLC), solid film