- Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism.
Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism.
Lipid oxidation leads to endothelial dysfunction, inflammation, and foam cell formation during atherogenesis. Glucose also contributes to lipid oxidation and promotes pathologic changes in membrane structural organization, including the development of cholesterol crystalline domains. In this study, we tested the comparative effects of eicosapentaenoic acid (EPA), an omega-3 fatty acid indicated for the treatment of very high triglyceride (TG) levels, and other TG-lowering agents (fenofibrate, niacin, and gemfibrozil) on lipid oxidation in human low-density lipoprotein (LDL) as well as membrane lipid vesicles prepared in the presence of glucose (200 mg/dL). We also examined the antioxidant effects of EPA in combination with atorvastatin o-hydroxy (active) metabolite (ATM). Glucose-induced changes in membrane structural organization were measured using small angle x-ray scattering approaches and correlated with changes in lipid hydroperoxide (LOOH) levels. EPA was found to inhibit LDL oxidation in a dose-dependent manner (1.0-10.0 µM) and was distinguished from the other TG-lowering agents, which had no significant effect as compared to vehicle treatment alone. Similar effects were observed in membrane lipid vesicles exposed to hyperglycemic conditions. The antioxidant activity of EPA, as observed in glucose-treated vesicles, was significantly enhanced in combination with ATM. Glucose treatment produced highly-ordered, membrane-restricted, cholesterol crystalline domains, which correlated with increased LOOH levels. Of the agents tested in this study, only EPA inhibited glucose-induced cholesterol domain formation. These data demonstrate that EPA, at pharmacologic levels, inhibits hyperglycemia-induced changes in membrane lipid structural organization through a potent antioxidant mechanism associated with its distinct, physicochemical interactions with the membrane bilayer.