Skip to Content
MilliporeSigma
  • Determination of polyphenolic compounds in Cirsium palustre (L.) extracts by high performance liquid chromatography with chemiluminescence detection.

Determination of polyphenolic compounds in Cirsium palustre (L.) extracts by high performance liquid chromatography with chemiluminescence detection.

Talanta (2014-12-02)
Edyta Nalewajko-Sieliwoniuk, Julita Malejko, Monika Mozolewska, Elżbieta Wołyniec, Jolanta Nazaruk
ABSTRACT

The first method for the simultaneous determination of polyphenolic antioxidants in extracts from leaves of Cirsium palustre based on high performance liquid chromatography combined with flow injection chemiluminescence detection (HPLC-FI-CL) has been developed. The extracts were prepared by using methanol as extraction medium and two types of extraction methods (reflux and ultrasound assisted extraction). The post-column CL determination of polyphenols was based on their enhancing effect on the chemiluminescence intensity generated in manganese(IV)-hexametaphosphate-formaldehyde system in a phosphoric acid medium. Main antioxidants determined in C. palustre leaves were eriodictyol-7-O-glucoside, luteolin-7-O-glucoside and 6-hydroxyluteolin-7-O-glucoside belonging to flavonoids, and chlorogenic acid belonging to phenolic acids. Chromatographic separation was carried out on a C18 column with gradient elution by using a mobile phase containing 0.25% (v/v) phosphoric acid in water (solvent A) and 100% methanol (solvent B). Under the optimized conditions of chromatographic separation and CL detection the validation of the method was performed. The calibration curves showed good linearity in the concentration range from 0.5 to 40 µg mL(-1). The HPLC-FI-CL method was successfully applied to the determination of four polyphenolic compounds in methanolic extracts from leaves of C. palustre. The accuracy of the developed method was confirmed by the comparison of the results with those obtained by an HPLC-PDA method. The relative error of determination does not exceed 6.1%. However, the HPLC-FI-CL method is characterized by 40-65 times higher sensitivity compared to the HPLC-PDA method.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Supelco
Methanol, analytical standard
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Acetic acid, JIS special grade, ≥99.7%
Sigma-Aldrich
Sodium hydroxide solution, 7 M
Sigma-Aldrich
Acetic acid, ≥99.7%, suitable for amino acid analysis
Sigma-Aldrich
Chlorogenic acid, ≥95% (titration)
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Sodium hydroxide, JIS special grade, ≥96.0%
Sigma-Aldrich
Acetic acid, SAJ first grade, ≥99.0%
Sigma-Aldrich
Sodium hydroxide solution, 6 M
Sigma-Aldrich
Acetic acid, 99.5-100.0%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Sodium hydroxide solution, 1 M
Sigma-Aldrich
Sodium hydroxide solution, 0.05 M