Skip to Content
MilliporeSigma

A novel in vivo model of permanent intestinal aganglionosis.

The Journal of surgical research (2014-07-13)
Justin P Wagner, Veronica F Sullins, James C Y Dunn
ABSTRACT

Enteric neuromuscular disease is a characteristic of several disease states, including Hirschsprung disease, esophageal achalasia, Chagas disease, and gastroparesis. Medical therapy for these conditions is limited, and surgical intervention may incur significant morbidity. Alternatively, transplantation of neural progenitor cells may regenerate enteric ganglia. Existing aganglionosis model systems are limited by swift animal demise or by spontaneous regeneration of native ganglia. We propose a novel protocol to induce permanent aganglionosis in a segment of rat jejunum, which may serve as an experimental transplantation target for cellular therapy. This protocol was performed in 17 adult female Sprague-Dawley rats. A laparotomy was performed and a 1-cm segment of jejunum was isolated from continuity. Among 14 rats, the isolated segments were treated with benzalkonium chloride (BAC) for 20 min to induce aganglionosis. Jejunal segment isolation was performed without BAC treatment in three rats. The animals were euthanized at posttreatment days 21-166. Muscle layer diameter was compared among normal, isolated, and BAC-treated isolated jejunal segments. The presence of jejunal ganglia was documented by immunohistochemical staining (IHC) for beta-III tubulin (TUJ1) and S100, markers of neuronal and glial cell lineages, respectively. Ganglia were identified by IHC in normal and isolated jejunal segments. Isolated segments had significantly hypertrophied smooth muscle layers compared with normal jejunum (diameter 343 ± 53 μm versus 211 ± 37 μm, P < 0.0001). BAC-treated jejunal segments had no IHC evidence of ganglionic structures. Aganglionosis was persistent in all specimens up to 166 days after treatment. The exclusion of a jejunal segment from continuity and concurrent treatment with BAC results in an effective, reproducible, and permanent model of aganglionosis. Muscular hypertrophy and aganglionosis in the isolated jejunal segment make it an ideal recipient site for transplantation of neuroglial precursor cells.

MATERIALS
Product Number
Brand
Product Description

Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ethanol, 94.8-95.8%
Sigma-Aldrich
Formaldehyde solution, SAJ first grade, ≥35.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehyde solution, 10%
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Formaldehyde solution, JIS special grade, 36.0-38.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, 36.5-38% in H2O
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
DAPI, for nucleic acid staining