Skip to Content
MilliporeSigma
  • Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells.

Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells.

International journal of molecular medicine (2015-01-13)
X Zhao, G Liu, H Shen, B Gao, X Li, J Fu, J Zhou, Q Ji
ABSTRACT

Tubular atrophy and dysfunction is a critical process underlying diabetic nephropathy (DN). Understanding the mechanisms underlying renal tubular epithelial cell survival is important for the prevention of kidney failure associated with glucotoxicity. Autophagy is a cellular pathway involved in protein and organelle degradation. It is associated with many types of cellular homeostasis and human diseases. To date, little is known of the association between high concentrations of glucose and autophagy in renal tubular cells. In the present study, we investigated high glucose-induced toxicity in renal tubular epithelial cells by means of several complementary assays, including cell viability, cell death assays and changes in ultrastructure in an immortalized human kidney cell line, HK-2 cells. The extent of apoptosis was significantly increased in the HK-2 cells following treatment with high levels of glucose. In addition, in in vivo experiments using diabetic rats, high glucose exerted harmful effects on the tissue structure of the kidneys in the diabetic rats. Chronic exposure of the HK-2 cells and tubular epithelial cells of nephritic rats to high levels of glucose induced autophagy. Liraglutide inhibited these effects; however, treatment witht a glucagon-like peptide-1 receptor (GLP‑1R) antagonist enhanced these effects. Our results also indicated that the exposure of the renal tubular epithelial cells to high glucose concentrations in vitro led to the downregulation of GLP-1R expression. Liraglutide reversed this effect, while the GLP-1R antagonist promoted it, promoting autophagy, suggesting that liraglutide exerts a renoprotective effect in the presence of high glucose, at least in part, by inhibiting autophagy and increasing GLP-1R expression in the HK-2 cells and kidneys of diabetic rats.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Glutaraldehyde solution, technical, ~50% in H2O (5.6 M)
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Os EnCat® 40, extent of labeling: 0.3 mmol/g Os loading
Sigma-Aldrich
Glutaraldehyde solution, SAJ first grade, 20.0-26.0%
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Osmium tetroxide, Sealed ampule.
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
Trypan Blue, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Trypan Blue, Dye content 60 %, ≥80% (HPLC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Osmium tetroxide, ReagentPlus®, 99.8%
Sigma-Aldrich
Osmium tetroxide, ACS reagent, ≥98.0%
Sigma-Aldrich
Anti-GAPDH antibody, Mouse monoclonal, clone GAPDH-71.1, purified from hybridoma cell culture
Sigma-Aldrich
Streptozocin, ≥75% α-anomer basis, ≥98% (HPLC), powder
Sigma-Aldrich
Dextrose, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications