MilliporeSigma
  • Oxidative stress regulates IL-4 gene expression in mast cells through the reduction of histone deacetylase.

Oxidative stress regulates IL-4 gene expression in mast cells through the reduction of histone deacetylase.

Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery (2014-11-21)
Yuji Nakamaru, Dai Takagi, Akihiro Homma, Shigetsugu Hatakeyama, Satoshi Fukuda
ABSTRACT

Many proinflammatory cytokines are regulated by the acetylation and deacetylation of the core histone. Since dysregulation of T helper 2 cytokine production is a key in the pathogenesis of allergic diseases, we examined the role of histone deacetylase (HDAC) on interleukin (IL)-4 gene expression in mast cells. We also examined whether oxidative stress has any impact on HDAC activity. In vitro study. Academic research laboratory. An IgE-sensitized mast cell line (RBL-2H3 cells) was treated with varying concentrations of the HDAC inhibitors trichostatin A (TSA) and H2O2 and stimulated with antigens. The amount of IL-4 gene expression was quantified by real-time polymerase chain reaction. Quantitative measurement of IL-4 in the cell supernatant was performed using enzyme-linked immunosorbent assay. Moreover, HDAC activity was measured with the use of a nonisotopic assay that utilized an HDAC Fluorescent Activity Assay Kit. IL-4 mRNA expression was induced by antigens in IgE-sensitized RBL-2H3 cells. Pretreatment with TSA and H2O2 enhanced IL-4 mRNA expression up to 5-fold in a dose-dependent manner. Furthermore, HDAC activity in RBL-2H3 cells was reduced after treatment with H2O2. Our results suggest that oxidative stress may up-regulate IL-4 gene expression in mast cells via a decrease in HDAC activity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2,4-Dinitrophenol, moistened with water, ≥98.0%
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Nα-Acetyl-L-lysine
Supelco
2,4-Dinitrophenol, PESTANAL®, analytical standard
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Supelco
Hydrogen peroxide solution, ≥30%, for trace analysis
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
Hydrogen Peroxide Solution, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Hydrogen peroxide solution, purum p.a., ≥35% (RT)
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Glutamine
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
SAFC
L-Glutamine
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Trichostatin A, ≥98% (HPLC), from Streptomyces sp.