MilliporeSigma
  • Melatonin administration alters nicotine preference consumption via signaling through high-affinity melatonin receptors.

Melatonin administration alters nicotine preference consumption via signaling through high-affinity melatonin receptors.

Psychopharmacology (2015-02-24)
William J Horton, Hannah J Gissel, Jennifer E Saboy, Kenneth P Wright, Jerry A Stitzel
ABSTRACT

While it is known that tobacco use varies across the 24-h day, the time-of-day effects are poorly understood. Findings from several previous studies indicate a potential role for melatonin in these time-of-day effects; however, the specific underlying mechanisms have not been well characterized. Understanding of these mechanisms may lead to potential novel smoking cessation treatments. The objective of this study is examine the role of melatonin and melatonin receptors in nicotine free-choice consumption A two-bottle oral nicotine choice paradigm was utilized with melatonin supplementation in melatonin-deficient mice (C57BL/6J) or without melatonin supplementation in mice proficient at melatonin synthesis (C3H/Ibg) compared to melatonin-proficient mice lacking both or one of the high-affinity melatonin receptors (MT1 and MT2; double-null mutant DM, or MT1 or MT2). Preference for bitter and sweet tastants also was assessed in wild-type and MT1 and MT2 DM mice. Finally, home cage locomotor monitoring was performed to determine the effect of melatonin administration on activity patterns. Supplemental melatonin in drinking water significantly reduced free-choice nicotine consumption in C57BL/6J mice, which do not produce endogenous melatonin, while not altering activity patterns. Independently, genetic deletion of both MT1 and MT2 receptors in a melatonin-proficient mouse strain (C3H) resulted in significantly more nicotine consumption than controls. However, single genetic deletion of either the MT1 or MT2 receptor alone did not result in increased nicotine consumption. Deletion of MT1 and MT2 did not impact taste preference. This study demonstrates that nicotine consumption can be affected by exogenous or endogenous melatonin and requires at least one of the high-affinity melatonin receptors. The fact that expression of either the MT1 or MT2 melatonin receptor is sufficient to maintain lower nicotine consumption suggests functional overlap and potential mechanistic explanations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Saccharin, ≥99%
Sigma-Aldrich
Saccharin, ≥98%
Sigma-Aldrich
(−)-Nicotine, ≥99% (GC), liquid
Sigma-Aldrich
Melatonin, powder, ≥98% (TLC)
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Quinine, suitable for fluorescence, anhydrous, ≥98.0% (dried material, NT)
Sigma-Aldrich
(±)-Nicotine, ≥99% (TLC), liquid
Sigma-Aldrich
Quinine, 90%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%