MilliporeSigma
  • Application of a nanoflare probe specific to a latency associated transcript for isolation of KHV latently infected cells.

Application of a nanoflare probe specific to a latency associated transcript for isolation of KHV latently infected cells.

Virus research (2015-06-19)
Aimee N Reed, Timothy Putman, Christopher Sullivan, Ling Jin
ABSTRACT

One of the unique features of herpesvirus infection is latent infection following an initial exposure, which is characterized by viral genome persistence in a small fraction of cells within the latently infected tissue. Investigation of the mechanisms of herpesvirus latency has been very challenging in tissues with only a small fraction of cells that are latently infected. Cyprinid herpesvirus 3, also known as koi herpesvirus (KHV), is an important and deadly pathogen of koi and common carp, Cyprinus carpio. Acute infection can cause up to 100% mortality in exposed fish, and fish that survive the infection become latently infected. KHV becomes latent in a small percentage of B lymphocytes and can reactivate under stressful conditions. During latency, KHV ORF6 transcript is expressed in the latently infected B lymphocytes. In order to study KHV latent infection in cells that are only latently infected, a nanoflare probe specific to ORF6 RNA was used to separate KHV latently infected cells from total peripheral white blood cells (WBC). Using the ORF6 nanoflare probe, less than 1% of peripheral WBC was isolated from KHV latently infected koi. When this enriched population of WBC was examined by real-time PCR specific for KHV, it was estimated that about 1-2 copies of viral genome persists in the sorted cells. In addition, KHV ORF6 transcript was shown to be the major transcript expressed during latency by RNA-seq analysis. This study demonstrated that an RNA nanoflare probe could be used to enrich latently infected cells, which can subsequently be used to investigate the molecular mechanisms of KHV latency.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium Acetate Anhydrous, >99%, FG
Sigma-Aldrich
Sodium acetate solution, BioUltra, for molecular biology, ~3 M in H2O
Sigma-Aldrich
Sodium acetate, 99.995% trace metals basis
Sigma-Aldrich
Sodium acetate, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium acetate, meets USP testing specifications, anhydrous
Sigma-Aldrich
Sodium acetate, powder, BioReagent, suitable for electrophoresis, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Sodium acetate, anhydrous, BioUltra, for luminescence, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Sodium acetate, anhydrous, for molecular biology, ≥99%
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Glycerol, FCC, FG