- Enhancing biocompatibility of some cation selective electrodes using heparin modified bacterial cellulose.
Enhancing biocompatibility of some cation selective electrodes using heparin modified bacterial cellulose.
Bacterial cellulose (BC) and heparin-modified bacterial cellulose (HBC) were utilized to enhance the biocompatibility of highly thrombogenic PVC-based potassium and calcium membrane electrodes. Three types of membrane electrodes were prepared: (1) conventional PVC electrode (control), (2) PVC-based electrode sandwiched with bacterial cellulose membrane (BC-PVC), and (3) PVC-based electrode sandwiched with heparin-modified bacterial cellulose membrane (HBC-PVC). The potentiometric response characteristics of the modified potassium and calcium membrane electrodes (BC-PVC and HBC-PVC) were compared with those of the control PVC-based potassium and calcium selective electrode, respectively. Response characteristics of the modified membrane electrodes were comparable to the control PVC membrane electrode. The platelet adhesion investigations indicated that (BC) and (HBC) layers are less thrombogenic compared to PVC. Therefore, use of BC or HBC would enable the enhancement of the biocompatibility of PVC-based membrane electrodes for potassium and calcium while practically maintaining the overall electrochemical performance of the PVC sensing film.