MilliporeSigma

Trans-regulation of Syndecan Functions by Hetero-oligomerization.

The Journal of biological chemistry (2015-05-17)
Youngsil Choi, Mi-Jung Kwon, Yangmi Lim, Ji-Hye Yun, Weontae Lee, Eok-Soo Oh
ABSTRACT

Syndecans, a family of transmembrane heparansulfate proteoglycans, are known to interact through their transmembrane domains to form non-covalently linked homodimers, a process essential for their individual functions. Because all syndecan transmembrane domains are highly conserved and thus might mediate interactions between different members of the syndecan family, we investigated syndecan interactions in detail. All recombinant syndecan-2 and -4 protein variants containing the transmembrane domain formed not only sodium dodecyl sulfate (SDS)-resistant homodimers but also SDS-resistant heterodimers. Biochemical and structural data revealed that recombinant syndecan-2 and -4 formed intermolecular interactions in vitro, and the GXXXG motif in transmembrane domain mediated this interaction. When exogenously expressed in rat embryonic fibroblasts, syndecan-2 interacted with syndecan-4 and vice versa. Furthermore, bimolecular fluorescence complementation-based assay demonstrated specific hetero-molecular interactions between syndecan-2 and -4, supporting hetero-oligomer formation of syndecans in vivo. Interestingly, hetero-oligomerization significantly reduced syndecan-4-mediated cellular processes such as protein kinase Cα activation and protein kinase Cα-mediated cell adhesion as well as syndecan-2-mediated tumorigenic activities in colon cancer cells such as migration and anchorage-independent growth. Taken together, these data provide evidence that hetero-oligomerization produces distinct syndecan functions and offer insights into the underlying signaling mechanisms of syndecans.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Sodium fluoride, BioReagent, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium fluoride, BioXtra, ≥99%
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium Fluoride Solution
Sigma-Aldrich
Sodium fluoride, 99.99% trace metals basis
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
SAFC
HEPES
SAFC
HEPES