MilliporeSigma
  • Differential Gene Expression of the Proto-oncogene VAV3 and the Transcript Variant VAV3.1 in Oral Squamous Cell Carcinoma.

Differential Gene Expression of the Proto-oncogene VAV3 and the Transcript Variant VAV3.1 in Oral Squamous Cell Carcinoma.

Anticancer research (2015-05-13)
Thomas Trenkle, Samer G Hakim, Hans-Christian Jacobsen, Peter Sieg
ABSTRACT

The VAV proteins VAV1, VAV2 and VAV3 have been identified as important molecules in tumorigenesis, tumor growth and cell migration. In addition to the full-length isoforms, a much shorter family member, VAV3.1, also known as VAV3 isoform 2, is known to be differentially expressed in a broad variety of tissues. Furthermore, VAV3.1 was shown to be down-regulated in cultured keratinocytes by the growth factors epidermal growth factor (EGF) EGF and transforming growth factor beta (TGFβ) TGFβ which in turn play important roles in the pathogenesis of oral squamous cell carcinoma (OSCC). Herein we showed that VAV3.1 is underexpressed in OSCC tissue samples compared to corresponding normal mucosa. We further demonstrated a trend of distinctive down-regulation of mRNA for VAV3.1 in tissues of locally advanced OSCC that have already metastasized to regional lymph nodes, indicating an increased malignant potential of tumors with low VAV3.1 mRNA expression. Moreover, in other studies a correlation between increased VAV3 expression and cancer progression was shown. In the present study, the analyzed OSCC tissue samples showed no significant change of VAV3 mRNA expression. Taken together, our data support the hypothesis that molecular interactions and signaling cascades of VAV3 can be regulated or directed by the competing molecule VAV3.1. Additionally, discrete and different functions of VAV3.1 in metastasis and tumorigenesis are conceivable.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)