Skip to Content
MilliporeSigma
  • Polyethylene Glycol Coatings on Plastic Substrates for Chemically Defined Stem Cell Culture.

Polyethylene Glycol Coatings on Plastic Substrates for Chemically Defined Stem Cell Culture.

Advanced healthcare materials (2015-05-23)
Samantha K Schmitt, Angela W Xie, Raha M Ghassemi, David J Trebatoski, William L Murphy, Padma Gopalan
ABSTRACT

Human mesenchymal stem cells (hMSCs) are a widely available and clinically relevant cell type with a host of applications in regenerative medicine. Current clinical expansion methods can lead to selective changes in hMSC phenotype potentially resulting from relatively undefined cell culture surfaces. Chemically defined synthetic surfaces can aid in understanding the influence of cell-material interactions on stem cell behavior. Here, a thin copolymer coating for hMSC culture on plastic substrates is developed. The random copolymer is synthesized by living free radical polymerization and characterized in solution before application to the substrate, ensuring a homogeneous coating and limiting the sample-to-sample variations. The ability to coat multiple substrate types and cover large surface areas is reported. Arg-Gly-Asp-containing peptides are incorporated into the coating under aqueous conditions via their lysine or cysteine side chains, resulting in amide and thioester linkages, respectively. Stability studies show amide linkages to be stable and thioester linkages to be labile under standard serum-containing culture conditions. In addition, chemically defined passaging of hMSCs using only ethylenediaminetetraacetic acid on polystyrene dishes is shown. After passage, the hMSCs can be seeded back onto the same plate, indicating potential reusability of the coating.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Poly(dimethylsiloxane), viscosity 1.0 cSt (25 °C)
Sigma-Aldrich
Hexamethyldisiloxane, viscosity 0.65 cSt (25 °C)
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), 98%
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
Acetone, suitable for HPLC
Sigma-Aldrich
Acetone, for chromatography, ≥99.8%
Sigma-Aldrich
Acetone, for residue analysis, ≥99.5%
Sigma-Aldrich
2-Cyano-2-propyl benzodithioate, >97% (HPLC)
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), SAJ first grade, ≥98.0%
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), recrystallized from methanol, 99%
Sigma-Aldrich
Acetone, ≥99.5%, for residue analysis
Sigma-Aldrich
Acetone, for residue analysis, JIS 5000
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Sulfuric acid solution, 0.1 M
Sigma-Aldrich
Sulfuric acid solution, 0.05 M
Sigma-Aldrich
Sulfuric acid solution, 0.025 M
Sigma-Aldrich
Sulfuric acid, SAJ first grade, ≥95.0%
Sigma-Aldrich
Sulfuric acid, JIS special grade, ≥95.0%
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Sulfuric acid solution, 0.01 M
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Hydrogen peroxide solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
Sulfuric acid solution, 5 mM
Sigma-Aldrich
Acetone, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)