Skip to Content
MilliporeSigma
  • Localization of aquaporin 1 water channel in the Schmidt-Lanterman incisures and the paranodal regions of the rat sciatic nerve.

Localization of aquaporin 1 water channel in the Schmidt-Lanterman incisures and the paranodal regions of the rat sciatic nerve.

Neuroscience (2014-12-03)
E Segura-Anaya, A Martínez-Gómez, M A R Dent
ABSTRACT

Aquaporin 1 (AQP1) is a member of a family of small, integral membrane water-transporting proteins, which facilitate water movement across cell membranes in response to osmotic gradients. Several papers have studied the expression and function of the AQPs in the central nervous system. However, little is known about the AQPs in the peripheral nervous system (PNS). In the PNS, AQP1, AQP2 and AQP4 have been reported in both peripheral neurons and glial cells. In this work we studied the expression and localization of AQP1 in the rat sciatic nerve. We found that from the four AQPs we studied (AQP1, AQP2, AQP4 and AQP9) only AQP1 is expressed in the nerve by reverse transcription polymerase chain reaction (RT-PCR). AQP1 is also observed at the protein level by Western blot analysis. We also studied the localization of AQP1 in the sciatic nerve by immunohistochemistry. The results show that AQP1 is present in both myelinating and non-myelinating Schwann cells. In myelin internodes AQP1 is enriched in the Schmidt-Lanterman incisures and in some internodes it is also present in the abaxonal membrane. At the nodes of Ranvier, AQP1 co-localizes with actin in the paranodal regions of the nerve. Therefore, AQP1 might play an important role in myelin homeostasis maintaining the thermodynamic equilibrium across the plasma membrane in myelinated axons during electrical activity. Also the expression of AQP1 in non-myelinating Schwann cells supports the involvement of AQP1 in pain perception.