

sigma-aldrich.com

3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

Product Information

Acetylcholinesterase

from Electrophorus electricus (electric eel)

Catalog Number C2888 Storage Temperature -20 °C

CAS RN 9000-81-1

EC 3.1.1.7 Synonyms: AchE, Acetylcholine acetylhydrolase, cholinesterase, true cholinesterase

Product Description

Acetylcholinesterase (AChE) is a membrane-bound enzyme found in excitable tissues, such as synaptic junctions, and is involved in nerve impulse transmission.¹ It is the major enzyme responsible for the degradation of acetylcholine in vivo, using the following reaction.

AChE

Acetylcholine + H_2O — Choline + Acetic Acid

A model of the mechanism of AChE, which may explain its high catalytic rate with acetylcholine, has been proposed.2

Acetylcholinesterase, like butyrylcholinesterase (BChE; EC 3.1.1.8), is a serine hydrolase that belongs to the esterase/lipase family. AChE and BChE share substantial structural similarities, but differ in substrate specificities and inhibitor sensitivities.³ Using acetylcholine as a substrate, electric eel AChE has an activity 30-100 times greater than when butyrylcholine is used as the substrate.

AChE is a specific cholinesterase. It is a polymeric glycoprotein with two α and two β chains that differ by the C-terminus polypeptide.⁴ The molecule has two catalytic sites.¹³ Guanidine and 2-mercaptoethanol are required to release the four subunits. AChE exists in three different molecular forms as a result of different C-terminus splicing schemes.⁵ The three molecular forms have sedimentation coefficients of approximately 8, 14, and 18S.^{1,6} Using proteolytic enzymes, these forms can be converted to a form with a sedimentation coefficient of 11S. This form is similar to that purified from toluene-treated tissue.

AchE has applications in the detection of organophosphate and carbamate insecticides.³ the development of sensors for direct detection of organophosphates,⁷ the study of nerve impulse conduction, and the generation of biochemical currents.

Electric eel AChE exists as a tetrameric glycoprotein containing saccharides related or identical to sialic acid, N-acetylglucosamine, N-acetylgalactosamine, mannose and/or glucose, and, galactose.⁵

Molecular mass:^{4,8,10} 230–260 kDa Isoelectric point:¹¹ 5.35 Optimal pH: 7.6 Extinction coefficient: $E_{280}^{1\%} = 18.0$

Inhibitors: Fasciculin 2, huperzine-A, physostigmine (eserine), tetrahydroaminoacridine, diisopropylfluorophosphate

Ki:12 Fasciculin 2, 0.33 mM (23 °C, pH 8)

This enzyme is purified from the electric organ of the eel E. electricus. The product is supplied as a light vellow to tan lyophilized powder containing Trizma® buffer salts.

Specific activity: ≥1,000 units/mg

Unit definition: one unit will hydrolyze 1.0 µmole of acetylcholine to choline and acetate per minute at pH 8.0 and 37 °C.

This enzyme assay reaction is performed titrimetrically in a 50.4 mL reaction mixture containing 4 mM acetylcholine chloride, 40 mM MgCl₂, 100 mM NaCl, and 12-24 units AChE, at pH 8.0 at 37 °C.

Protein: ≥60%

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

The enzyme is soluble in water (1 mg/mL), and is also soluble in 0.1 M Trizma-HCl, pH 7.5 (2 mg/mL), yielding a clear solution. The enzyme can be solubilized and diluted in 0.02 M sodium phosphate buffer, pH 7.0. For dilute enzyme solutions (<1 mg/mL), add 1 mg/mL of BSA to stabilize the enzyme.

Storage/Stability

The enzyme is stable at -20 °C for >2 years.

For stabilization of AChE solutions, especially dilute solutions, add 1 mg/mL of BSA. These solutions will be stable in the refrigerator for at least six months. Because AChE is acid-labile, solutions must be buffered near neutral pH.³

References

- Massoulie, J., and Rieger, F., Acetylcholinesterase of fish electric organs (torpedo and electric eel); membrane complexes. *Eur. J. Biochem.*, **11(3)**, 441-455 (1969).
- Gilson, M.K. *et al.*, Open "back door" in a molecular dynamics simulation of acetylcholinesterase. *Science*, **263(511)**, 1276-1278 (1994).
- Villatte, F. *et al.*, Engineering sensitive acetylcholinesterase for detection of organophosphate and carbamate insecticides. *Biosens. Bioelectron.*, **13(2)**, 157-164 (1998).

- Leuzinger, W. *et al.*, Molecular properties of acetylcholinesterase. *J. Mol. Biol.*, **40(2)**, 217-225, (1969).
- Leuzinger, W., The number of catalytic sites in acetylcholonesterase. *Biochem. J.*, **123(2)**, 139-141 (1971).
- 6. Massoulié, J., The origin of the molecular diversity and functional anchoring of cholinesterases. *Neurosignals*, **11(3)**, 130-143 (2002).
- Massoulié, J. *et al.*, Solubilization of electric organ acetylcholinesterase from eels. Action of trypsin. *Eur. J. Biochem.*, **14(3)**, 430-439 (1970).
- Singh, A.K. *et al.*, Development of sensors for direct detection of organophosphates. Part I: Immobilization, characterization and stabilization of acetycholinesterases and organophosphate hydrolase on silica supports. *Biosens. Bioelectron.*, **14(8-9)**, 703-713 (1999).
- Rosenberry, T.L. *et al.*, Structure of 11S acetylcholinesterase subunit composition. *Biochemistry*, **13(15)**, 3068-3079 (1974).
- Kremzer, L.T., and Wilson, I.B., A partial characterization of acetylcholinesterase. *Biochemistry*, **3(12)**, 1902-1905 (1964).
- Bon, S., and Rieger, F., Interactions between lectins and electric eel acetylcholinesterase. *FEBS Lett.*, **53(3)**, 282-286 (1975).
- Leuzinger, W. *et al.*, Acetylcholinesterase II. Crystallization, absorption spectra, isoionic point. *Proc. Natl. Acad. Sci. USA*, **59(2)**, 620-623 (1968).
- Golicnik, M., and Stojan, J., Multi-step analysis as a tool for kinetic parameter estimation and mechanism discrimination in the reaction between tight-binding fasciculin-2 and electric eel. *Biochim. Biophys. Acta*, **1597(1)**, 164-172 (2002).

Trizma is a registered trademark of Sigma-Aldrich Co. LLC.

KAD, RBG, GCY, JWM, MAM 10/18-1