

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

HU-210

Product Number **H 7909** Storage Temperature –20 °C

Cas #: 112830-95-2

Synonyms:

(6aR)-trans-3-(1,1-Dimethylheptyl)-6a,7,10,10atetrahydro-1-hydroxy-6,6dimethyl-6H-dibenzo[b,d]pyran -9- methanol

Product Description

Molecular Formula: C₂₅ H₃₈ O₃

Molecular Weight: 386.57 (anhydrous)

Appearance: white solid Purity: >98% (GC) Melting Point: 72–75 °C

Cannabinoid receptors derive their name from the active ingredient of *Cannabis sativa* (marijuana). Mammalian tissues contain at least two types of cannabinoid receptor, CB₁ and CB₂, both coupled to G proteins. CB₁ receptors are expressed mainly by neurons of the central and peripheral nervous system whereas CB₂ receptors occur in certain non-neuronal tissues, particularly in immune cells. The activation of the CB₁ receptor initiates activation of the extracellular-signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAP kinase), followed by the inhibition of cAMP-dependent signaling, which results in complex changes in the expression of various genes.^{1,2} There is a growing interest in cannabinoids and their role in pain control

and muscle spasticity associated with multiple sclerosis or spinal cord injury. It has prompted the development of a range of novel cannabinoid receptor ligands, including several that show marked selectivity for CB₁ or CB₂ receptors.³

HU-210 is an analog of the tricyclic benzopyran Δ^9 -THC. Originally this compound was thought to be selective for CB₁, however currently it is known that HU-210 binds equally to both CB₁ and CB₂ receptors. HU-210 intraperitoneal injection in rats, starting at 20 µg/kg, results in a dose-dependent inhibition of plasma growth hormone, follicle-stimulating hormone and luteinizing hormone. Plasma adrenocorticotropic hormone and corticosterone levels revealed a dosedependent activation of the pituitary-adrenal axis after acute exposure to HU-210. Plasma prolactin levels reflected a biphasic action of HU-210: the 4 ug/kg dose resulted in high prolactin levels and the 20 and 100 µg/kg doses caused decrease in the levels of this hormone. HU-210 induces a set of endocrine alterations closely related to those described for natural cannabinoids such as Δ^9 -THC. HU-210 is a more potent inhibitor with doses 50-200 times lower than those required for Δ^9 -THC.

Preparation Instructions

HU-210 is soluble in DMSO at 20 mg/ml. It is insoluble in water.

Storage/Stability

Store at -20 °C under nitrogen, desiccated.

References

- Rodriguez de Fonseca, F., et al., Corticotropinreleasing factor (CRF) antagonist [D-Phe12,Nle21,38,C alpha MeLeu37]CRF attenuates the acute actions of the highly potent cannabinoid receptor agonist HU-210 on defensive-withdrawal behavior in rats., J. Pharmacol. Exp. Ther., 276, 56-64 (1996).
- Berdyshev, E. V., et al., Cannabinoid-receptorindependent cell signaling by N-acylethanolamines., Biochem. J., 360, 67-75 (2001).
- 3. Pertwee, R. G., Pharmacology of cannabinoid receptor ligands., Curr. Med. Chem., **6**, 635-664 (1999).
- 4. Martin–Calderon, J. E., et al., Characterization of the acute endocrine actions of (-)-11-hydroxydelta8-tetrahydrocannabinol-dimethylheptyl (HU-210), a potent synthetic cannabinoid in rats., Eur. J. Pharmacol., **344**, 77-86 (1998).

AH 03/03