

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

4-Nitroaniline

Product Number **N 2128**Store at Room Temperature

Product Description

Molecular Formula: $C_6H_6N_2O_2$ Molecular Weight: 138.1 CAS Number: 100-01-6 Melting Point: 146 °C¹

Synonyms: p-nitroaniline, p-nitraaniline¹

p-Nitroaniline is a chromogenic molecule that is used as a dyestuff intermediate in industrial applications. In biochemical research, enzyme assays utilize modified aminoacyl or peptidyl p-nitroanilines as substrates. The enzyme catalyzes the release of free p-nitroaniline, which is the basis of the colorimetric determination of the enzyme activity. Ameasurements are commonly performed at 410 nm ($E^{mM}=8.80$), because of the absorbance overlap of the substrate and product at lower wavelengths.

Applications of the colorimetric properties of p-nitroanilide include the design of biopolymer drug delivery systems and of solid supports for enzyme immobilization. 5,6,7 A kinetic analysis of the α -chymotrypsin catalyzed hydrolysis of aminoacyl and peptidyl p-nitroanilide substrates in vesicles has been reported. 8

Computational studies on the crystal charge density of p-nitroaniline have been published. 9,10

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

This product is soluble in ethanol (50 mg/ml), with heat as needed, yielding a slightly hazy, yellow to orange solution. It is soluble in mineral acids such as HCl, and also in alcohol (40 mg/ml) and ether (33 mg/ml).¹

References

- 1. The Merck Index, 12th ed., Entry# 6681.
- Wang, Q. M., et al., A continuous colorimetric assay for rhinovirus-14 3C protease using peptide p-nitroanilides as substrates. Anal. Biochem., 252(2), 238-245 (1997).
- Hou, W. C., et al., Detection of protease activities using specific aminoacyl or peptidyl p-nitroanilides after sodium dodecyl sulfate - polyacrylamide gel electrophoresis and its applications. Electrophoresis, 20(3), 486-490 (1999).
- Brandt, J. J., et al., Continuous assay for VanX, the D-alanyl-D-alanine dipeptidase required for high-level vancomycin resistance. Anal. Biochem., 272(1), 94-99 (1999).
- Kopecek, J., Controlled biodegradability of polymers - a key to drug delivery systems. Biomaterials, 5(1), 19-25 (1984).
- 6. Shen, E., et al., Microphase separation in bioerodible copolymers for drug delivery. Biomaterials, **22(3)**, 201-210 (2001).
- 7. Percot, A., et al., Immobilization of lipid vesicles on polymer support via an amphiphilic peptidic anchor: application to a membrane enzyme. Bioconjug. Chem., **11(5)**, 674-678 (2000).
- 8. Blocher, M., et al., Modeling of enzymatic reactions in vesicles: the case of α -chymotrypsin. Biotechnol. Bioeng., **62(1)**, 36-43 (1999).
- Volkov, A., et al., Evaluation of net atomic charges and atomic and molecular electrostatic moments through topological analysis of the experimental charge density. Acta Crystallogr. A, 56(Pt 3), 252-258 (2000).
- Volkov, A., et al., On the origin of topological differences between experimental and theoretical crystal charge densities. Acta Crystallogr. A, 56(Pt 4), 332-339 (2000).

GCY/RXR 10/03