3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com # **Product Information** CAMK18 Active human, recombinant GST-tagged, expressed in Sf9 cells Catalog Number **C9619**Lot Number 019K1566 Storage Temperature –70 °C Synonyms: RP11-462F15.1; CKLiK; CaM-K1; CaMKID #### **Product Description** CAMK1δ or Ca²⁺/calmodulin-dependent kinase I-like kinase (CKLiK) is activated by Ca²⁺ and calmodulin, and is detected in CD34+-derived neutrophils and eosinophils, as well as in mature peripheral blood granulocytes.¹ CAMK1δ exhibits Ca²⁺/CaM-dependent activity that is enhanced *in vitro* by phosphorylation of Thr¹⁸⁰ by CaM-K kinase (CaM-KK)alpha, consistent with detection of CAMK1δ-activating activity in HeLa cells.² This recombinant product was expressed by baculovirus in *Sf*9 insect cells using an N-terminal GST-tag. The gene accession number is NM 153498. It is supplied in 50 mM Tris-HCl, pH 7.5, with 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol. Molecular mass: ~68 kDa Purity: ≥70% (SDS-PAGE, see Figure 1) Specific Activity: 117–159 nmole/min/mg (see Figure 2) #### **Precautions and Disclaimer** This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices. # Storage/Stability The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles. Figure 1. SDS-PAGE Gel of Lot Number 019K1566: >90% (densitometry) Figure 2. Specific Activity of Lot Number 019K1566: 138 nmole/min/mg ## **Procedure** ## **Preparation Instructions** Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM. Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/μl BSA solution. Kinase Solution – Dilute the Active CAMK1 δ (0.1 $\mu g/\mu l$) with Kinase Dilution Buffer to the desired concentration. Note: The lot-specific specific activity plot may be used as a guideline (see Figure 2). It is recommended that the researcher perform a serial dilution of Active CAMK1 δ kinase for optimal results. 10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 μ l aliquots at –20 °C. γ -³²P-ATP Assay Cocktail (250 μM) – Combine 5.75 ml of Kinase Assay Buffer, 150 μl of 10 mM ATP Stock Solution, 100 μl of γ -³²P-ATP (1 mCi/100 μl). Store in 1 ml aliquots at –20 °C. Substrate Solution – Dissolve the synthetic peptide substrate (KKALRRQETVDAL-amide) in water at a final concentration of 1 mg/ml. 1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water. #### Kinase Assay This assay involves the use of the ³²P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed. - 1. Thaw the Active CAMK1 δ , Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ - 32 P-ATP Assay Cocktail may be thawed at room temperature. - 2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 μl: 10 ul of Kinase Solution 7.5 µl of Substrate Solution 2.5 μl of 5 mM CaCl₂ solution containing 0.75 μg Calmodulin - 3. Set up a blank control as outlined in step 2, substituting 7.5 μl of cold water (4 °C) for the Substrate Solution. - 4. Initiate each reaction with the addition of 5 μ l of the γ - 32 P-ATP Assay Cocktail, bringing the final reaction volume to 25 μ l. Incubate the mixture in a water bath at 30 °C for 15 minutes. - 5. After the 15 minute incubation, stop the reaction by spotting 20 μ l of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper. - Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each. - 7. Set up a radioactive control to measure the total γ - 32 P-ATP counts introduced into the reaction. Spot 5 μ l of the γ - 32 P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample. - 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter. - 9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity #### Calculations: 1. Specific Radioactivity (SR) of ATP (cpm/nmole) SR = $\frac{\text{cpm of 5} \ \mu \text{l of } \gamma^{-32} \text{P-ATP Assay Cocktail}}{\text{nmole of ATP}}$ cpm – value from control (step 7) nmole – 1.25 nmole (5 μ l of 250 μ M ATP Assay Cocktail) 2. Specific Kinase Activity (SA) (nmole/min/mg) nmole/min/mg = $$\Delta$$ cpm × (25/20) SR × E × T SR = specific radioactivity of the ATP (cpm/nmole ATP) Δ cpm = cpm of the sample – cpm of the blank (step 3) 25 = total reaction volume 20 = spot volume T = reaction time (minutes) E = amount of enzyme (mg) #### References - Verploegen, S. et al., Characterization of the role of CaMKI-like kinase (CKLiK) in human granulocyte function. Blood, 106, 1076-1083 (2005). - Ishikawa, Y. et al., Identification and characterization of novel components of a Ca²⁺/calmodulin-dependent protein kinase cascade in HeLa cells. FEBS Lett., 550, 57-63 (2003). TLD, MAM 02/09-1