


ProductInformation

TETRAMISOLE HYDROCHLORIDE

Product Number T1512

CAS #: 5086-74-8

Product Description

Appearance: White powder

Molecular formula: C₁₁H₁₂N₂S·HCl

Molecular weight: 240.8

Dissociation Constant: $pK_a = 8.0^1$

Melting point: 264-265°C2

Tetramisole is an alkaline phosphatase inhibitor. It is a racemic mixture of (+) and (-) isomers. The (-) isomer (levamisole) accounts for most of the biological activity of tetramisole.³

Tetramisole has been used to inhibit alkaline phosphatase in the effective range of 0.4-2 mM. Inhibition of intestinal alkaline phosphate requires higher concentrations. In addition to its use in enzyme $^{7-13}$ and protein phosphorylation 14 studies, tetramisole has been used to study membrane, tissue 15 and animal 5,16 systems.

Tetramisole is an anthelminthic agent used in veterinary applications to treat helminth or worm infections.

Methods for gas chromatography (GC)¹⁷ and high pressure liquid chromatography (HPLC)¹⁸ analysis of levamisole levels in plasma have been published. The GC method has a limit of detection of 4 ng/mL and the HPLC method has a limit of detection of 20 ng/mL. Since these methods use achiral means of separation, the methods could presumably also be used for analysis of tetramisole.

Preparation Instructions

Tetramisole hydrochloride is soluble in water at a concentration of 50 mg/mL. A clear, colorless solution is obtained. Acid solutions are stable; however, hydrolysis occurs under alkaline conditions. 1,19

The rate of hydrolysis increases with pH and temperature. Solutions are stable at 2-8°C for approximately one month. ²⁰

Storage/Stability

Stored at room temperature as a powder, tetramisole hydrochloride has a shelf-life of 8 years. ²⁰

References

- Clarke's Isolation and Identification of Drugs, 2nd ed., Moffat, A.C. et al, Eds. (The Pharmaceutical Press, London, 1986)p.701. [Information for Levamisole; assumed the same for Tetramisole.]
- Dictionary of Organic Compounds, 5th ed., (Charpman and Hall New York, 1982) p. 5287.
- 3. Martindale, The Extra Pharmacopoeia, 31st ed., Reynolds, J.E.F. Ed. (Royal Pharmaceutical Press, London, 1996) pp. 103 and 126.
- Fedde, K.N. et al., Arch. Biochem. Biophys. 264, 400-409 (1988).
- 5. Hsu, H.H.T. *et al.*, J. Biol. Chem, 271, 26383-26388 (1996)
- 6. Hsu, H.H.T. *et al.*, Biochim Biophys. Acta, 1416, 320-332 (1999).
- 7. van Belle, H., Biochim. Biophys. Acta, 289, 158-168 (1972).
- Bhargava K.K. *et al.*, J. Med. Chem., 20, 563-566 (1977).
- Ponder, B.A. *et al.*, J. Histochem. Cytochem., 29, 981-984 (1981).
- 10. Cyboron G.W. *et al.*, J. Biol. Chem., 257, 4141-4146 (1982).
- 11. Mayer, D. et al., Histochem. J., 23, 100-106 (1991).
- 12. Picher, M. *et al.*, J. Biol. Chem., 268, 4699-4703 (1993).
- 13. Register, T.C. *et al.*, J. Biol. Chem., 259, 922-928 (1984).
- 14. Scher, B.M. et al., Int. J. Oncol., 12, 987-96 (1998).
- 15. Becq, F. *et al.*, J. Biol. Chem., 271, 16171-16179 (1996).
- 16. Thienpoint, D. *et al.*, Nature, 209, 1084-1086 (1966).
- 17. Rousseau, R. *et al.*, Eur. J. Drug Met. Pharmacokinet., 6, 281-288 (1981).

20. Sigma Quality Control data.

- 18. Marriner, S. et al., Analyst (London) 105, 993-996 (1980).
- 19. Van den Bossche, H. and Janssen, P.A.J., Life Sci., 6, 1781 (1967).

irb 4/21/99