

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

PTPRF (1275-1897), active, GST tagged, human recombinant, expressed in *E. coli* cells

Catalog Number **SRP5080** Storage Temperature –70 °C

Synonym: LAR

Product Description

PTPRF or LAR is a member of the protein tyrosine phosphatase family with an extracellular region, a single transmembrane region, and two tandem intracytoplasmic catalytic domains. PTPRF has been shown to function in the regulation of epithelial cell-cell contacts at adherents junctions as well as in the control of β-catenin signaling. An increased expression level of this protein was found in the insulin-responsive tissue of obese, insulin-resistant individuals and may contribute to the pathogenesis of insulin resistance.

Recombinant human PTPRF (1275-1897) was expressed in *E. coli* cells using an N-terminal GST tag. The gene accession number is NM_002840. Recombinant protein stored in 20 mM MOPS, pH 7.5, 50 mM NaCl, 10 mM glutathione, 0.25 mM DTT, 0.1 mM PMSF, and 30% glycerol.

Molecular mass: ~93 kDa

Purity: 70–95% (SDS-PAGE, see Figure 1)

Specific Activity: 386–522 nmol/min/mg (see Figure 2)

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1.

SDS-PAGE Gel of Typical Lot 70–95% (densitometry)

Figure 2.
Specific Activity of Typical Lot 386–522 nmol/min/mg

Procedure

Preparation Instructions

Phosphatase Assay Buffer- 250 mM Imidazole, pH 7.2

Phosphatase Dilution Buffer – Dilute phosphatase assay buffer 5-fold in a solution containing 0.2% 2-mercaptolethanol and 65 ng/µl BSA.

Phosphatase Solution – Dilute the active PTPRF $(0.1 \mu g/\mu l)$ with Phosphatase Dilution Buffer to the desired concentration.

<u>Note</u>: The lot-specific specific activity plot may be used as a guideline (see Figure 2). It is recommended the researcher perform a serial dilution of active PTPRF for optimal results.

Substrate Assay Solution – 1 mM Tyrosine phosphopeptide-2 (DADE(pY)LIPQQG).

Detection Solution – BIOMOL Green™ Reagent (BioMol Cat. No. AK-111).

Phosphatase Assay

- 1. Prepare a fresh batch of Phosphatase Dilution Buffer and keep on ice.
- 2. Prepare phosphate standard curve following the instructions for BIOMOL Green Reagent. Briefly, prepare 1:1 serial dilutions of phosphate standard solutions with Phosphatase Dilution Buffer in a volume of 50 µl. Also, use 50 µl Phosphatase Dilution Buffer as a blank. The range of phosphate amount should be 0–4 nmole.
- Thaw the active PTPRF and Phosphate Dilution Buffer on ice. Prepare serial dilutions of PTPRF using Phosphatase Dilution Buffer.
- 4. In a pre-cooled microcentrifuge tube, add the following reaction components in total volume of 50 ml.

10 μl of Phosphatase Solution 4 μl of Substrate Assay Solution 36 μl of Phosphatase Dilution Buffer

5. Set up a blank control as outlined in step 4, substituting 10 μ l of Phosphatase Dilution Buffer for the Phosphatase Solution.

- 6. Initiate each reaction by incubating the mixture in a water bath at 37 °C for 30 minutes.
- 7. Add 100 μ l of BIOMOL Green Reagent to each reaction including control tubes.
- 8. Add 100 μl of BIOMOL Green Reagent to each phosphatase standard solution including blank.
- 9. Incubate all samples, controls, and standards at room temperature for 30 minutes to allow development of the green color.
- 10. Measure the absorbance of the reaction solution in a spectrophotometer at 630 nm.
- 11. Plot the free phosphate standard curve. Determine absorbance (y) for each sample (where y = absorbance of sample-background absorbance) and calculate the corresponding nmole of phosphate released (x) during the assay using the equation

y = A*x + B or x = [y-B]/A (the A and B values are determined from the slope of the line from the standard curve).

12. Calculate the phosphatase specific activity (SA)

Calculations:

Specific Phosphatase Activity (SA) (nmole/min/mg)

nmole/min/mg =
$$\frac{x (1000)}{T \times E}$$

- x corresponding phosphate released
- T reaction time (min)
- E Enzyme amount (μg)

References

- 1. Ahmad, F. et al., Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells. J. Biol. Chem., **272**, 448-457 (1997).
- Tsujikawa, K. et al., Distinct functions of the two protein tyrosine phosphatase domains of LAR (leukocyte common antigen-related) on tyrosine dephosphorylation of insulin receptor. Molec. Endocr., 15, 271-280, (2001).

BIOMOL Green is a trademark of Enzo Life Sciences.

FF,MAM 11/11-1