ANTI-HUMAN INTERLEUKIN-2 SOLUBLE RECEPTOR β (IL-2 sR β) Developed in Goat, Affinity Isolated Antibody Product Number I6277 ## **ProductInformation** #### **Product Description** Anti-Human Interleukin-2 Soluble Receptor Beta (IL-2 sR β) is developed in goat using a recombinant human IL-2 sR β), expressed in Sf21 cells as immunogen. The antibody is purified using IL-2 R β affinity chromatography. Anti-Human IL-2 sR β may be used to neutralize human cell surface IL-2 R β mediated-bioactivity. For best results using cells expressing the high affinity IL-2 receptors, the use of both anti-IL-2 R α (Product No. I6152) and anti-IL-2 R β is recommended. By ELISA and immunoblotting the antibody shows < 15% cross-reactivity with recombinant human IL-3 sR α , < 5% cross-reactivity with recombinant human IL-1 RII, IL-2 sR γ , IL-5 sR α , and < 2% cross-reactivity with recombinant human IL-5 sR β . In addition, the antibody shows no cross-reactivity with other cytokines tested.* Anti-Human IL-2 sR β may be used for neutralization of the biological activity mediated by IL-2 R β and for the detection of IL-2 R β by immunoblotting and ELISA. The biological effects of IL-2R signals are much more complex than simply mediating T-cell growth. Depending on the set of conditions, IL-2R signals may also promote cell survival, effector function, and apoptosis. These sometimes contradictory effects underscore the fact that a diversity of intracellular signaling pathways are potentially activated by IL-2R. There are at least 3 components of the IL-2 receptor, IL-2 R α , IL-2 β R, and IL-2 R γ chains. The IL-2 R γ chain is shared by IL-2, IL-4 and IL-7. The low affinity α chain is a 55 kD polypeptide. It is incapable of transmitting intracellular signals due to its short cytoplasmic tail. However, it can bind IL-2 rapidly to the cell membrane. The β chain (75 kD) and the γ chain (64 kD) form a complex that can bind IL-2 with high affinity and slow dissociation and can mediate signal transduction. Cells known to express the β-chain include: activated CD56⁺ (NK) cells plus CD8⁺ and CD4⁺ T cells,^{3,4} resting NK cells and, perhaps, CD8⁺ T cells,^{3,4} activated and resting B cells, ⁵ mature thymocytes, ⁶ embryonic fibroblasts, ⁷ resting monocytes ⁸ and neutrophils. ⁹ #### Reagents The product is supplied lyophilized from a $0.2 \mu m$ filtered solution in phosphate buffered saline. Endotoxin level is < 10 ng per mg antibody as determined by the LAL method. #### **Preparation Instructions** To one vial of lyophilized powder, add 1 ml of 0.2 µm-filtered PBS to produce a 0.1 mg/ml stock solution of antibody. If aseptic technique is used, no further filtration should be needed for use in cell culture environments. #### Storage/Stability Prior to reconstitution, store at -20°C. Reconstituted product may be stored at 2-8°C for at least one month. For prolonged storage, freeze in working aliquots at -20°C. Avoid repeated freezing and thawing. ### **Procedure** Anti-Human IL-2 sR β is tested for its ability to neutralize human cell surface IL-2 R β mediated IL-2 bioactivity in a 3 H-thymidine incorporation assay using MO7e cells. 10 The ND $_{50}$ of the antibody is defined as the concentration of antibody resulting in a one-half maximal inhibition of the cell surface IL-2 R β mediated recombinant human IL-2 response on a responsive cell line. #### **Product Profile** For neutralization, a working concentration of 10-30 μ g/ml of Anti-Human IL-2 sR β will block 50% of the bioactivity due to 30 ng/ml recombinant human IL-2 in a 3 H-thymidine incorporation assay using 10 5 /ml MO7e cells. For Indirect Immunoblotting, a working concentration of 1-2 μ g/ml is determined using recombinant human IL-2 sR β at 1 ng/lane under non-reducing conditions and 0.5 ng/ml under reducing conditions. For Indirect ELISA, a working concentration of 0.5 - 1 μ g/ml is determined to detect recombinant IL-2 sR β to a limit of 0.15 ng/well. Note: In order to obtain best results in different techniques and preparations we recommend determining optimal working dilutions by titration test. - References 1. Noguchi, M., et al., Science, **262**, 1877 (1993) - 2. Russel, S.M., et al., Science, 262, 1880 (1993). - 3. Nakamura, Y., et al., Nature, **369**, 330 (1994). - 4. Uchiyama, T., et al., J. Immunol., 126, 1393 (1981). - F. Taniquahi T and Minami V Call **72** 5 (1902) - 5. Taniguchi, T. and Minami, Y., Cell, **73**, 5 (1993). - Vanham, G., et al., Clin. Immunol. Immunopathol., 71, 60 (1994). - Caligiuri, M.A., et al., J. Exp. Med., 171, 1509 (1990). - 8. Nakanishi, K., et al., Proc. Natl. Acad. Sci. USA, **89**, 3551 (1992). - 9. Leclercq, G., et al., Int. Immunol., **7**, 843 (1995). - 10. Hicks, C., et al., Growth Factors, 5, 201 (1991). - 11. Plaisance, S., et al., Int. Immunol., 4, 739 (1992). - 12. Benveniste, E.N., et al., J. Neuroimmunol., **17**, 301 (1988). - 13. Espinoza-Delgado, I., et al., J. Leukoc. Biol., **57**, 13 (1995). - 14. Waldmann, T.A., Science, 232, 727 (1986). - 15. Herrmann, F., et al., J. Exp. Med., **162**, 1111 (1985). - 16. Weidmann, E., et al., Cancer Res., **52**, 5963 (1992). - * rhANG, rhAR, rmB7-2, rhBTC, rhβ-NGF, rhBDNF, rmC10, rhCD4, rhCD8, rhCD28, rhCNTF, rrCNTF, rhEGF, rhENA-78, rhEpo, rhFGF acidic, rhFGF basic, rhFGF-4, rhFGF-5, rhFGF-6, rhFGF-7, rhFGF-9, rhG-CSF, rmG-CSF, rhGM-CSF, rhGM-CSF Rα, rmGM-CSF, rhGRO α , rhGRO β , rhGRO γ , rhHB-EGF, rhHRG- α , rhHGF, rhI-309, rhIFN- γ , rhIGF-I, rhIGF-I R, rhlL- 1α , rhlL-1 RI, rmlL- 1α , rhlL- 1β , rmlL- 1β , rhlL-1ra, rmIL-1ra, rhIL-2, rmIL-2, rhIL-3, rmIL-3, rhIL-4, rmIL-4, rhIL-5, rmIL-5, rhIL-6, rhIL-6 sR, rmIL-6, rhIL-7, rhIL-7 R, rmIL-7, rhIL-8, rhIL-9, rmIL-9, rhIL-10, rhIL-10 sR, rmIL-10, rhIL-11, rhIL-12, rmIL-12, rhIL-13, rmIL-13, rhIL-15, rhIP-10, rhJAK-1, rmJAK-1, rmJE, rhLIF, rmLIF, rhM-CSF, rmM-CSF, rhMCP-1, rhMCP-1 R, rhMCP-2, rhMCP-3, rhMidkine, rhMIP-1 α , rmMIP-1 α , rhMIP-1 β , rmMIP-1 β , rmMIP-2, rhNT-3, rhNT-4, rhOSM, rhPD-ECGF, hPDGF, pPDGF. rhPDGF-AA, rhPDGF-AB, rhPDGF-BB, rhPDGF Rα, rhPIGF, rhPTN, rhRANTES, rhSCF, rmSCF, rhsqp130, rhSLPI, rhSTAT-1, rmSTAT-4, hTfR, rhTGF-α, rhTGF-β1, rhTGF-β2, rhTGF-β3, raTGF-β5, rhLAP (TGF- β 1), rhLatent TGF- β 1, rhTGF- β sRII, rhTGF- β sRIII, rhTNF- α , rmTNF- α , rhTNF- β , rhsTNF RI, rhsTNF RII, rhTPO, rhVEGF lpg 4/99