User Guide

Human PYY (Total)

96-Well Plate

EZHPYTT66K

Intended Use2
Principles of Assay2
Reagents Supplied2
Storage and Stability3
Reagent Precautions
Materials Required5
Sample Collection and Storage6
Reagent Preparation
Assay Procedure8
Assay Procedure for Human (Total) PYY ELISA Kit10
Microtiter Plate Arrangement11
Calculations12
Interpretation12

Standard Curve13
Assay Characteristics
Normal Range of PYY (Total) Levels in Human Blood
Post-Prandial Elevation of PYY Levels
Correlation Graph21
Quality Controls22
Troubleshooting22
Product Ordering
Notice

Intended Use

This Human PYY (Total) ELISA kit is used for the non-radioactive quantification of human PYY (Total) in serum and plasma. One kit is sufficient to measure 38 unknown samples in duplicate. PYY is one of the key GI hormones regulating appetite and energy balance in animal. The blood PYY level is low after fasting and elevates significantly after meal.

This kit is for research use only. Not for use in diagnostic procedures.

Principles of Assay

This assay is a Sandwich ELISA based on:

- Binding of human PYY molecules (both 1-36 and 3-36) in the sample by rabbit anti-human PYY IgG and immobilization of the resulting complex to the wells of a microtiter plate coated by a pre-titered amount of anti-rabbit IgG antibodies
- The simultaneous binding of a second biotinylated antibody to the PYY
- Wash away of unbound materials, followed by conjugation of horseradish peroxidase to the immobilized biotinylated antibodies
- Wash away of free enzyme
- Quantification of immobilized antibody-enzyme conjugates by monitoring horseradish peroxidase activities in the presence of the substrate 3.3'.5.5'-tetra-methylbenzidine

The enzyme activity is measured spectrophotometrically by the increased absorbency at 450 nm, corrected from the absorbency at 590nm, after acidification of formed products. Since the increase in absorbency is directly proportional to the amount of captured human PYY (both 1-36 and 3-36) in the unknown sample, the concentration of total PYY can be derived by interpolation from a reference curve generated in the same assay with reference standards of known concentrations of human PYY.

Reagents Supplied

Each kit is sufficient to run one 96-well plate and contains the following reagents:

Note: Store all reagents at 2-8 °C.

Reagents Supplied	Volume	Quantity	Cat. No.
Microtiter Plate with 2 plate sealers Note: Unused strips should be resealed in the foil pouch with desiccant provided and stored at 2-8 °C.	-	1 plate 2 sealers	EPDAR
10X HRP Wash Buffer Concentrate	50 mL	2 bottles	EWB-HRP
Human PYY Standard	0.5 mL/vial Lyophilized	, 1 (//2)	
Human PYY Quality Controls 1 and 2	0.5 mL/vial Lyophilized	1 vial each	E6066-K

Reagents Supplied	Volume	Quantity	Cat. No.
Assay Buffer	5 mL	2 bottles	EAB
Matrix Solution	1.5 mL	1 vial	EMTX-PS7
Human PYY (Total) Capture Antibody	3 mL	1 bottle	E1066-C
Human PYY (Total) Detection Antibody	3 mL	1 bottle	E1066-D
Enzyme Solution	12 mL	1 bottle	EHRP-3
Blocking solution	3 mL	1 bottle	EBS
Substrate Solution	12 mL	1 bottle	ESS-TMB2
Stop Solution 0.3 M HCl (Caution: Corrosive Solution)	12 mL	1 bottle	ET-TMB

Storage and Stability

Recommended storage for kit components is 2-8 °C.

All components are shipped and stored at 2-8 °C. Reconstituted standards and controls can be frozen for future use but repeated freeze/thaw cycles should be avoided. Refer to expiration dates on all reagents prior to use. Do not mix reagents from different kits unless they have the same lot numbers.

Reagent Precautions

Sodium Azide

Sodium azide or $\operatorname{ProClin^{ om}}$ has been added to some reagents as a preservative. Although the concentrations are low, Sodium azide and $\operatorname{ProClin^{ om}}$ may react with lead and copper plumbing to form highly explosive metal azides. Dispose of unused contents and waste in accordance with international, federal, state, and local regulations.

Hydrochloric Acid

Hydrochloric acid is corrosive and can cause eye and skin burns. It is harmful if swallowed and can cause respiratory and digestive tract burns. Avoid contact with skin and eyes. Do no swallow or ingest.

Note: See next page for Full Hazardous Labels for components in this kit.

Symbol Definitions

Ingredient

Cat. No.

Full Label

Human PYY (Total) Capture Antibody

E1066-C

Danger. Causes serious eye irritation. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Human PYY (Total) Detection Antibody

E1066-D

Danger. Causes serious eye irritation. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Human PYY Standard

E8066-K

Danger. Harmful if swallowed. Causes serious eye damage. May damage fertility or the unborn child. Toxic to aquatic life with long lasting effects. Obtain special instructions before use. Avoid release to the environment. Wear eye protection. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. IF exposed or concerned: Get medical advice/ attention.

Stop Solution

ET-TMB

Warning: May be corrosive to metals.

10X HRP Wash Buffer Concentrate

EWB-HRP

Warning: May cause an allergic skin reaction. Wear protective gloves. IF ON SKIN: Wash with plenty of soap and water.

Ingredient	Cat. No.	Full Labe
		^

Assay Buffer

EAB

Warning. Causes serious eye irritation. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Human PYY Quality Controls 1 & 2

E6066-K

Danger. Harmful if swallowed. Causes serious eye damage. May damage fertility or the unborn child. Toxic to aquatic life with long lasting effects. Obtain special instructions before use. Avoid release to the environment. Wear eye protection. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. IF exposed or concerned: Get medical advice/ attention.

Blocking Solution

EBS

Warning. Causes serious eye irritation. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Materials Required (Not Provided)

- Multi-channel Pipettes and pipette tips: 10 μL-50 μL and 50 μL-300 μL
- Pipettes and pipette tips: 20 μL-100 μL
- Buffer and Reagent Reservoirs
- Vortex Mixer
- Deionized water
- Microtiter Plate Reader capable of reading absorbency at 450 nm and 590 nm
- Orbital Microtiter Plate Shaker
- Absorbent Paper or Cloth
- Optional: DPP IV Inhibitor and Protease Inhibitors, AEBSF or Aprotinin, for blood collection.

Sample Collection and Storage

- If same blood sample is to be used for both the total PYY and specifically the PYY 3-36 determinations, DPP IV inhibitor (Cat # DPP4) should be added immediately to the blood after drawing and following vendor instructions.
- To prepare serum samples, whole blood is directly drawn into a Vacutainer® serum tube that contains no anticoagulant. For long term storage of sample, we recommend addition of either AEBSF or aprotinin to a final concentration of 1 mg/mL or 500 KIU/mL, respectively. Mix well and let blood clot at room temperature for 30 min.
- 3. Promptly centrifuge the clotted blood at 2,000 to 3,000 x g for 15 minutes at 4 \pm 2°C.
- Transfer and store serum samples in separate tubes. Date and identify each sample.
- Use freshly prepared serum or store samples in aliquots at ≤ -20 °C for later use. Avoid repeated freeze/thaw cycles.
- 6. To prepare plasma samples, whole blood should be collected into Vacutainer® EDTA-plasma tubes and placed on ice. For long term storage of sample, we recommend addition of either AEBSF or aprotinin to a final concentration of 1 mg/mL or 500 KIU/mL, respectively, mix well and centrifuge at 2,000 to 3,000 x g for 15 min at 4 ±2°C. Observe the same precautions in the preparation of serum samples.
- Other protease inhibitors or cocktails of inhibitors may be used instead of, but the optimal concentrations to offer protection of PYY should be pre-determined.
- 8. If heparin is to be used as an anticoagulant, the effect on the assay outcome at the dose of heparin used should be pre-determined.
- 9. Avoid using samples with gross hemolysis or lipemia.

Reagent Preparation

Preparation of Capture and Detection Antibody Mixture

Prior to use, measure and combine equal amounts of the Human PYY (Total) Capture Antibody (3 mL) and Human PYY Detection Antibody (3 mL). Invert to mix thoroughly. If the total volume of antibody mixture needed for the assay is less than 6 mL, mix the two antibody solutions at equal volume and keep the rest separated for next assay. Prepare mixture immediately prior to use. Discard unused remaining mixture after use.

Standard and Quality Controls Preparation

PYY Standard Preparation

- Use care in opening the lyophilized Standard vial. Using a pipette, reconstitute
 the PYY Standard with 0.5 mL distilled or deionized water into the vial to give a
 concentration prescribed in the analysis sheet. Invert and mix gently, let sit for
 five minutes or until completely dissolved then mix well.
- Label six tubes 1, 2, 3, 4, 5, and 6. Add 0.2 mL Assay Buffer to each of the six tubes. Prepare serial dilutions by adding 0.2 mL of the reconstituted standard to tube 1, mix well and transfer 0.2 mL of tube 2 to tube 3, mix well and transfer 0.2 mL of tube 2 to tube 3, mix well and transfer 0.2 mL of tube 3 to tube 4, mix well and transfer 0.2 mL of tube 4 to tube 5, mix well and transfer 0.2 mL of tube 5 to tube 6, mix well.

Note: Do not use a Repeater pipette. Change tip for every dilution. Wet tip with Standard before dispensing. Unused portions of reconstituted standard should be stored at ≤ -20 °C. Avoid multiple freeze/thaw cycles.

Standard Concentration (pg/mL)	Volume of Deionized Water to Add	Volume of Standard to Add
X		
(Refer to analysis sheet for exact concentration)	0.5 mL	0

Tube #	Standard Concentration (pg/mL)	Volume of Assay Buffer to Add	Volume of Standard to Add
1	X/2	0.2 mL	0.2 mL of reconstituted standard
2	X/4	0.2 mL	0.2 mL of Tube 1
3	X/8	0.2 mL	0.2 mL of Tube 2
4	X/16	0.2 mL	0.2 mL of Tube 3
5	X/32	0.2 mL	0.2 mL of Tube 4
6	X/64	0.2 mL	0.2 mL of Tube 5

PYY Quality Control 1 and 2 Preparation

Use care in opening the lyophilized Quality Control vials. Using a pipette, reconstitute each of the PYY Quality Control 1 and Quality Control 2 with 0.5 mL distilled or deionized water into the vials. Invert and mix gently, let sit for five minutes or until completely dissolved then mix well.

Note: For exact concentration of Quality Control 1 and 2, refer to Analysis Sheet. Unused portions of Quality Controls should be stored at ≤ -20 °C. Avoid multiple freeze/thaw cycles.

Assay Procedure

Warm all reagents to room temperature before setting up the assay.

- Dilute the 10X HRP wash buffer concentrate 10-fold by mixing the entire contents of both buffer bottles with 900 mL de-ionized or glass distilled water.
- 2. Remove the required number of strips from the Microtiter Assay Plate. Assemble the strips in an empty plate holder and fill each well with 300 μ L diluted (1X) Wash Buffer. Decant wash buffer and remove the residual amount from all wells by inverting the plate and tapping it smartly onto absorbent towels several times. Wash assay plate using this procedure 3 times. Do not let wells dry before proceeding to the next step. If an automated machine is used for the assay, follow the manufacturer's instructions for all washing steps described in this protocol.
- 3. Add 20 µL Matrix Solution to Blank, Standard, and Quality Control wells (refer to Microtiter Plate Arrangement for suggested well orientations).
- 4. Add 20 µL Assay Buffer to each of the Blank and sample wells.
- 5. Add in duplicate 20 µL human PYY standards in order of ascending concentration to the appropriate wells.
- 6. Add in duplicate 20 µL QC1 and 20 µL QC2 to the appropriate wells.
- 7. Add sequentially 20 μL of the unknown samples in duplicate to the remaining wells.
- Add 20 μL Blocking Solution to each well. Cover the plate with plate sealer and incubate at room temperature for 30 min on an orbital microtiter plate shaker set to rotate at moderate speed (approximately 400 to 500 rpm).
- 9. Remove plate sealer (**Caution:** Do Not Decant At This Step) and add 50 μ L of the 1:1 mixture of capture and detection antibodies with a multi-channel pipette. Re-cover plate with sealer and incubate at room temperature for 1.5 hours on an orbital microtiter plate shaker set to rotate at moderate speed (approximately 400 to 500 rpm).
- 10. Remove plate sealer and decant solution from the plate. Tap as before to remove residual solution in the wells. Wash wells 3 times with 1X HRP wash buffer, 300 μ l per well per wash. Decant and tap firmly after each wash to remove residual buffer.
- Add 100 μl Enzyme Solution to each well with a multi-channel pipette. Cover the plate with sealer and incubate with moderate shaking at room temperature for 30 minutes on the microtiter plate shaker.

For research use only. Not for use in diagnostic procedures.

- 12. Remove sealer, decant solutions from the plate, and tap plate to remove the residual fluid. Wash wells 6 times with 1X HRP wash buffer, 300 μ l per well per wash. Decant and tap firmly after each wash to remove residual buffer.
- Add 100 µL of Substrate Solution to each well, cover plate with sealer and shake in the plate shaker for 5-20 minutes. Blue color should be formed in wells of reference standards with intensity proportional to increasing concentrations of PYY.

Note: Please be aware that the color may develop more quickly or more slowly than the recommended incubation time depending on the localized room temperature. Please visually monitor the color development to optimize the incubation time.

14. Remove sealer and add 100 µL stop Solution (Caution: Corrosive Solution) and shake plate by hand to ensure complete mixing of solution in all wells. The blue color should turn into yellow after acidification. Wipe the bottom of the microtiter plate to remove any residue prior to reading on plate reader. Read absorbance at 450 nm and 590 nm in a plate reader within 5 minutes and ensure that there are no air bubbles in any well.

Assay Procedure for Human (Total) PYY ELISA Kit

	Step 1	Step 2	Step 3	Step 4	Step 5-7		Ste 8	р	Step 9-10		Step 11-12			Step 13)		ер 4
Well #		Remove residual buffer by owels	Matrix Solution	Assay Buffer	Stds./QCs/ Samples	Bloc Solu	king ition		Mixture of Capt & Detect. Abs.		Enzyme Solution		Subst	rate	je.	Stop Solution	Plate Reader
A1,A2		dual b	20 μL	20 µL	1	20	μL		50 μL	ature. sh Buf	100 μL	ıre.	100	μL	peratu		
B1,B2	Buffer with	ove resi	20 μL	-	20 μL of Tube 6 Std.			ate		5 hours at room temperature. 300 µL diluted HRP Wash Buffer.		Temperature. n Buffer.			at room temperature.	<u>=</u>	5 min
C1,C2		00 µL diluted HRP wash buffer. Remc tapping smartly on absorbent towels	20 μL	-	20 μL of Tube 5 Std.			Agitate. Incubate temperature.		at room		at Room Tempera HRP Wash Buffer.				, Mix well.	vithin 5
D1,D2	bottles of 10X HRP Wash 900 mL de-ionized water.	h buffe sorbent	20 μL	-	20 μL of Tube 4 Std.			er plate with sealer. Agitate. Incul 30 minutes at room temperature.		hours a		es at Ro			minutes	each well, necessary	Read Absorbance at 450 nm and 590 nm within after addition of Stop Solution
E1,E2	10X H -ionize	.P was on ab	20 μL	-	20 μL of Tube 3 Std.					e 1.5 vith 30		30 minutes µL diluted			ite 20		and 59 stop S
F1,F2	es of : mL de	ed HR	20 μL	-	20 μL of Tube 2 Std.			vith se es at l		cubat , 3X v		te 30 00 µL			and Incubate	100 µL bubbles	0 nm a
G1,G2		JL dilut Ding sn	20 μL	-	20 μL of Tube 1 Std.			Cover plate with sealer. 30 minutes at room		Reseal Plate. Agitate. Incubate 1. move sealer, wash wells, 3X with		Agitate, Incubate 30 Wash 6X with 300 µL				Add air-	at 450
H1,H2	Dilute both	3X with 300 µ tapp	20 μL	-	20 μL of Reconst. Std.			Cover 30		e. Agit 7, was		tate, I sh 6X			Agitate,	Sealer, Deflate	bance
A3,A4	Dilu	with	20 µL	-	20 μL of QC 1					Plate		Agi					bsor
B3.B4			20 μL	-	20 μL of QC 2					seal ve se		Seal,			l Pla	Remove	ad A
C3,C4		Wash plate	-	20 µL	20 μL of Sample 1	,	V			Resea Remove		,	1	,	Reseal Plate,	~	Re
D3,D4 Etc.		Wash	-	20 µL	20 µL of Sample 2										_		

Microtiter Plate Arrangement

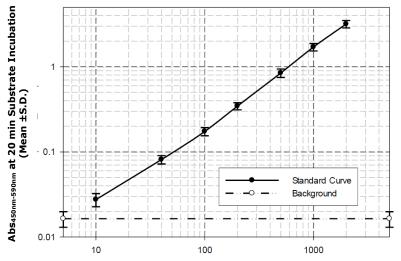
Human (Total) PYY ELISA

A Blank QC1 QC1 S 6 7 8 9 10 11 12 B Tube 6 Tube 6 QC2 <	_								
1	12								
I blank Blank QC 1 QC 1 QC 1 QC 2	11								
Interest of the standard and and and and and and and and and an	10								
1	6								
I	8								
1 2 3 4 5 Blank Blank QC 1 QC 1 Standard Tube 6 Tube 6 Standard Standard Sample 1 Sample 1 Tube 4 Tube 4 Standard Standard Standard Etc. Etc. Tube 2 Tube 2 Tube 2 Standard Standard Standard Tube 1 Standard Standard Standard Standard Standard Reconst. Reconst. Standard Standard Standard Standard	7	_		_		_			
Tube 6 Standard Stand	9								
Blank Blank QC 1 Tube 6 Standard QC 2 Standard Standard Sample 1 Tube 4 Standard	2								
Blank Blank Tube 6 Standard Tube 5 Standard Tube 4 Standard Standard Standard Tube 3 Tube 3 Standard Tube 2 Standard Tube 1 Tube 1 Standard Standard Standard Tube 1 Standard	4	QC 1	QC 2	Sample 1	Sample 2	Etc.			
Blank Tube 6 Standard Tube 4 Standard Tube 3 Standard Tube 2 Standard Tube 1 Standard Standard Standard Tube 1 Standard Standard Standard Standard Standard	ю	QC 1	QC 2	Sample 1	Sample 2	Etc.			
	2	Blank	Tube 6 Standard	Tube 5 Standard	Tube 4 Standard	Tube 3 Standard	Tube 2 Standard	Tube 1 Standard	Reconst. Standard
4 M U D H L U I	1	Blank	Tube 6 Standard	Tube 5 Standard	Tube 4 Standard	Tube 3 Standard	Tube 2 Standard	Tube 1 Standard	Reconst. Standard
		⋖	В	U	Q	ш	ш	g	I

Calculations

Graph a reference curve by plotting the absorbance unit of 450nm, less unit at 590nm, on the Y-axis against the concentrations of PYY standard on the X-axis The dose-response curve of this assay fits best to a sigmoidal 4- or 5-parameter Logistic equation. The results of unknown samples can be calculated with any computer program having a 4- or 5-parameter Logistic function.

Note: When sample volumes assayed differ from 20 μ L, an appropriate mathematical adjustment must be made to accommodate for the dilution factor (for example, if 10 μ L of sample is used, then calculated data must be multiplied by 2). When sample volume assayed is Less than 20 μ L, compensate the volume deficit with either matrix solution or assay buffer, whichever is appropriate.


Interpretation

- The assay will be considered accepted when all Quality Control values fall within the calculated QC range. If any QCs fall outside of the control range, review results with a supervisor.
- 2. If the difference between duplicate results of a sample is >15% CV, repeat the sample.
- 3. The theoretical minimal detecting concentration of this assay is 6.5 pg/mL human PYY (20 μL sample size).
- 4. The dynamic range of this assay is 14 pg/mL to 1,800 pg/mL human PYY (20 μ L sample size). Any result greater than 1,800 pg/mL in a 20 μ L sample should be diluted using matrix solution or assay buffer as diluent, whichever is appropriate, and the assay repeated until the results fall within range.

Standard Curve

Human PYY (Total) ELISA:

Graph of Typical Standard Curve (n = 15 assays)

Human PYY 3-36, pg/mL

For demonstration only - Do not use for calculations

Assay Characteristics

Sensitivity

The Lowest Level of PYY (Total) that can be detected by this assay is 6.5 pg/mL when using a 20 μ L sample size.

Specificity

The specificity (also known as selectivity) of the analytical test is its ability to selectively measure the analytes in the presence of other Like components in the sample matrix.

Human PYY 3-36	100%
Human PYY 1-36	104%
Porcine PYY 3-36	4%
Porcine PYY 1-36	1%

Note: Amino acid sequence of PYY is identical among porcine, canine, rat and mouse.

Human [Leu31, Pro34] PYY	138%
Human [Pro34] PYY	158%
Human and Rat NPY	n.d.
Human and Rat PPP	n.d.
Human Ghrelin	n.d.
Des-Octanoyl Human Ghrelin	n.d.
Human GIP 1-42	n.d.
Human GIP 3-32	n.d.
Glucagon	n.d.
Human GLP-1	n.d.
Human Leptin	n.d.
Human Insulin	n.d.
Human C-peptide	n.d.
Human Amylin	n.d.
Human Adiponectin	n.d.

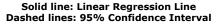
n.d. = not detectable up to 50 nM concentration

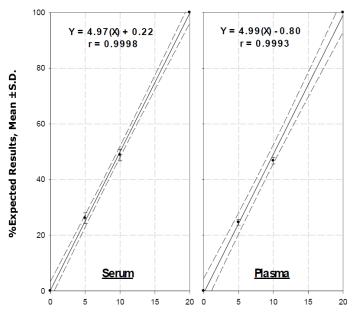
Precision

Intra- and Inter-Assay Variation

Sample	PYY (pg/mL) Mean, n = 6	Intra-Assay %CV	Inter-Assay %CV	
#1, serum	38.9	2.66	6.93	
#2, serum	83.2	1.79	6.07	
#3, serum	173.2	1.52	6.75	
#4, plasma	45.3	5.78	3.65	
#5, plasma	115.9	1.00	16.50	
#6, plasma	219.9	0.86	4.56	

The assay variations of Human PYY (Total) ELISA kits were studied on three human serum and plasma samples with varying concentrations of endogenous PYY. Intra-assay variations were calculated from results of six duplicate determinations in one assay. Inter-assay variations were calculated from results of six separate assays with duplicate samples in each assay.

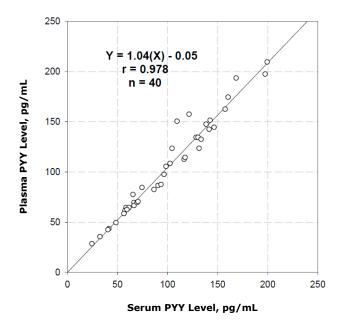

Spike Recovery of Human PYY in Assay Samples


	PYY 3-36	Serum		Plasma	
	Spiked,	Recovery			
Sample I.D.	pg/mL	pg/mL	Rate	pg/mL	Recovery Rate
A	0 (Basal)	119	-	122	-
	40	154	88%	163	103%
	100	205	86%	214	92%
	500	598	96%	605	97%
В	0 (Basal)	115	-	130	-
	40	145	75%	171	103%
	100	197	82%	232	102%
	500	525	82%	658	106%
С	0 (Basal)	144	-	172	-
	40	172	70%	214	105%
	100	215	71%	266	94%
	500	558	83%	700	106%
D	0 (Basal)	92	-	104	-
	40	128	90%	145	103%
	100	171	79%	201	97%
	500	511	84%	647	109%
F	0 (Basal)	75	-	78	-
	40	115	100%	114	90%
	100	167	92%	167	89%
	500	566	98%	572	99%
I	0 (Basal)	77	-	81	-
	40	109	80%	124	108%
	100	157	80%	183	102%
	500	490	83%	607	105%
J	0 (Basal)	92	-	99	-
	40	125	83%	137	95%
	100	182	90%	190	91%
	500	557	93%	584	97%
o	0 (Basal)	68	-	72	-
	40	101	83%	110	95%
	100	153	85%	166	94%
	500	513	89%	562	98%
Q	0 (Basal)	151	-	159	-
	40	189	95%	202	108%
	100	227	76%	252	93%
	500	599	90%	656	99%
т	0 (Basal)	136	-	156	-
	40	168	80%	203	118%
	100	228	92%	261	105%
	500	598	92%	662	101%
Mean ±S.D. (n = 10)	40	-	84.3% ±9.1%	-	102.5% ±7.8%
	100	-	83.3% ±7.0%	_	95.9% ±5.4%
	500	-	88.9% ±5.9%	-	101.6% ±4.3%
	300	-	GG.5 /0 ±3.570	-	101.0 /0

Varying amounts of human PYY 3-36 were added to 10 human serum and plasma samples and total PYY content of each sample was assayed by Human PYY (Total) ELISA. The recovery rate = (observed PYY concentration - Basal PYY concentration) / spiked PYY concentration x 100%.

Linearity of Sample Dilution

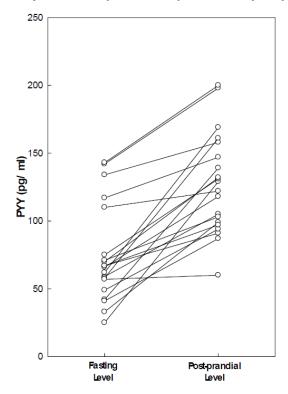
Human PYY (Total) ELISA: Sample Dilution Linearity Test



Volume of Sample Assayed, µL/well

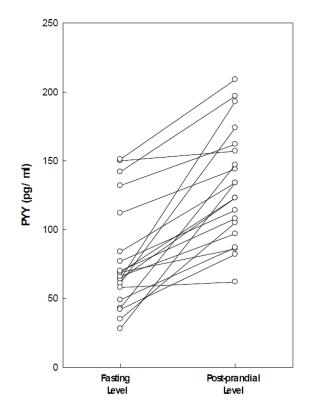
Thirteen post-prandial human serum and plasma samples with 80-220 pg/mL endogenous PYY (Total) are assayed at 20, 10 and 5 uL each for total PYY. The value of each sample obtained from 20 uL is defined as 100% expected.

Normal Range of PYY (Total) Levels in Human Blood Correlation Between Serum and Plasma PYY Levels

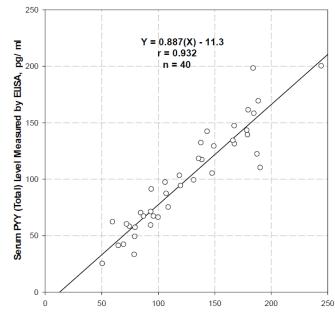


Pre- and post-prandial serum and plasma samples from 20 subjects are assayed by Human PYY (Total) ELISA. The results of serum/plasma pair are analyzed by linear regression analysis.

Post-Prandial Elevation of PYY Levels


Post-prandial Elevation of Serum PYY Level

Fasting and 1-hour post-prandial serum samples from 20 subjects are assayed for PYY by Human PYY (Total) ELISA


Post-Prandial Elevation of Plasma PYY Level

Fasting and 1-hour post-prandial plasma samples from 20 subjects are assayed for PYY by Human PYY (Total) ELISA

Correlation Graph

Correlation of Human Serum PYY (Total) Assay Results RIA vs. ELISA

Serum PYY (Total) Level Measured by RIA, pg/ ml

Fasting and post-prandial serum samples from 20 normal subjects are assayed for total PYY content by RIA (Cat.#PYYT-66HK) and by ELISA (Cat.#EZPYYT-66K). The paired results from different method are compared by linear regression analysis.

Quality Controls

The ranges for each analyte in Quality Control 1 and 2 are provided on the card insert, or available at our website <u>SigmaAldrich.com</u>.

Troubleshooting

- To obtain reliable and reproducible results the operator should carefully read this manual and fully understand all aspects of each assay step before attempting to run the assay.
- Throughout the assay the operator should adhere strictly to the procedures with good laboratory practice.
- Have all necessary reagents and equipment ready on hand before starting.
 Once the assay has been started all steps should be completed with precise timing and without interruption.
- Avoid cross contamination of any reagents or samples to be used in the assay.
- Make sure all reagents and samples are added to the bottom of each well.
- Careful and complete mixing of solutions in the well is critical. Poor assay
 precision will result from incomplete mixing or cross well contamination due
 to inappropriate mixing.
- Remove any air bubbles formed in the well after acidification of substrate solution because bubbles interfere with spectrophotometric readings.
- High signal in background or blank wells could be due to:
 - cross well contamination by standard solution or sample, or
 - inadequate washing of wells with Wash Buffer, or
 - overexposure to light after substrate has been added

Product Ordering

Products are available for online ordering at SigmaAldrich.com.

Replacement Reagents

Reagents	Cat. No.
Microtiter ELISA Plate	EPDAR
10X HRP Wash Buffer Concentrate	EWB-HRP
Human PYY Standards	E8066-K
Human PYY Quality Controls 1 and 2	E6066-K
Assay Buffer	EAB
Matrix Solution	EMTX-PS7
Human PYY Detection Antibody	E1066-D
Human PYY Capture Antibody	E1066-C
Blocking Solution	EBS
Enzyme Solution	EHRP-3
Substrate	ESS-TMB2
Stop Solution	ET-TMB
10-pack of Human PYY (Total) ELISA Kits	EZHPYYT-66BK

Notice

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

Technical Assistance

Visit the tech service page at SigmaAldrich.com/techservice.

Terms and Conditions of Sale

Warranty, use restrictions, and other conditions of sale may be found at SigmaAldrich.com/terms.

Contact Information

For the location of the office nearest you, go to SigmaAldrich.com/offices

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada.

MilliporeSigma, Millipore, Milliplex and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.

© 2007-2024 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

For research use only. Not for use in diagnostic procedures.

IFU-EZHPYYT66K Rev 02/24

