

3050 Spruce Street Saint Louis, Missouri 63103 USA Telephone (800) 325-5832 (314) 771-5765 Fax (314) 286-7828 email: techserv@sial.com sigma-aldrich.com

ProductInformation

ANTI-FLT-3, HUMAN
Developed In Goat, Affinity Isolated Antibody

Product Number F 0550

Product Description

Anti-Flt-3 is developed in goat using purified recombinant human Flt-3 extracellular domain, expressed in mouse NSO cells, as immunogen. The antibody is purified using human Flt-3 affinity chromatography.

Anti-Flt-3 recognizes recombinant human Flt-3 by ELISA and immunoblotting.

The Flt-3 (fms-like tyrosine kinase) receptor, also named Flk-2 (fetal liver kinase) and Stk-1(stem cell tyrosine kinase) is a member of the class III subfamily of receptor tyrosine kinases. The Additional members of this receptor family are the receptors for macrophage-colony-stimulating factor, and steel factor, encoded by the FMS^{6-8} and $KIT^{9,10}$ protooncogenes, respectively, and the receptors for α - and β -platelet-derived growth factors (PDGFRA and -B). Common structural features include the extracellular region composed of five immunoglobulin-like domains and an intracellular tyrosine kinase made up of an ATP-binding loop and a catalytic domain separated by a kinase insert domain.

Flt-3 is 130-155 kDa protein, expressed in various tissues, including placenta, gonads, and tissues of nervous and hematopoietic origin. The RTKs Flt3, Fms, and Kit play a key role in hematopoiesis by stimulating proliferation and/or differentiation of various hematopoietic cell types. 11,12 Mice lacking a functional Flt3 receptor have normal mature hematopoietic populations; however, they exhibit reduced numbers of early B cell precursors and multipotent stem cells. 13 The recently cloned Flt3 ligand (FL), 14-16 in combination with other cytokines, stimulates proliferation of human and murine hematopoietic progenitor/stem cells in vitro as well as in vivo. 14-20 FL is a transmembrane protein with structural homology to M-CSF and SCF. FL also promotes growth of early B cell progenitor cells in combination with IL-7^{21,22} and induces adhesion of the precursor B cell line BaF3/Flt3 to fibronectin by activating the fibronectin receptors VLA-4 and VLA-5 integrins.2

Reagents

Anti-Flt-3 is supplied lyophilized from a $0.2\,\mu m$ filtered solution of phosphate buffered saline. Endotoxin level is < 10 ng per mg antibody as determined by the LAL method.

Preparation Instructions

To one vial of lyophilized powder, add 1 ml of $0.2~\mu m$ filtered PBS to produce a 0.1~mg/ml stock solution of antibody. If aseptic technique is used, no further filtration should be needed for use in cell culture environments.

Storage/Stability

Prior to reconstitution, store at -20 °C. Reconstituted product may be stored at 2-8 °C for at least one month. For prolonged storage, freeze in working aliquots at -20 °C. Avoid repeated freezing and thawing

Product Profile

For indirect ELISA, a working concentration of 0.5- $1.0 \mu g/ml$ is determined to detect a limit of ~0.13 ng/well of recombinant human Flt-3.

For indirect immunoblotting, a working concentration of 0.1-0.2 μ g/ml is determined using human Flt-3 at 5 ng/lane under non-reducing and reducing conditions.

Note: In order to obtain best results in different techniques and preparations we recommend determining optimal working dilutions by titration test.

References

- Rosnet, O., and Birnbaum, D., Crit. Rev. Oncog. 4, 595-613 (1993).
- 2. Rosnet, O., et al., D., Blood, 82, 1110-1119 (1993).
- Small, D., et al., Proc. Natl. Acad. Sci. USA, 91, 459-463 (1994).
- Rosnet, O., et al., Oncogene, 6, 1641-1650 (1991).
- Matthews, W., Cell, 65, 1143-1152 (1991).
- Coussens, L., et al., Nature, 320, 277-280 (1986).

- 7. Woolford, J., et al., Cell, **55**, 965-977 (1988).
- 8. Rothwell, V. M., and Rohrschneider, L. R., Oncogene Res., 1, 311-324 (1987).
- 9. Chabot, B., et al., Nature, 335, 88-89 (1988).
- 10. Geissler, E. N., et al., Cell, 55, 185-192 (1988).
- 11. Rohrschneider, L. R. in Guidebook to Cytokines and Their Receptors, (Nicola, A., ed), Oxford University Press, Oxford, UK, pp. 168-170(1995).
- 12. Lyman, S. D., and Jacobsen, S. E., Blood, **91**, 1101-1134 (1998).
- 13. Mackarehtschian, K., et al., Immunity, **3**, 147-161 (1995).
- 14. Lyman, S. D., et al., Cell, **75**, 1157-1167 (1993).
- 15. Hannum, C., et al., Nature, 368, 643-648 (1994).

- 16. Lyman, S. D., et al., Blood, 83, 2795-2801 (1994).
- 17. Hudak, S., et al., Blood, **85**, 2747-2755 (1995).
- 18. Jacobsen, S. E., et al., J. Exp. Med., **181**, 1357-1363 (1995).
- 19. Hirayama, F., et al., Blood, 85, 1762-1768 (1995).
- 20. Brasel, K., et al., Blood, 88, 2004-2012 (1996).
- 21. Ray, R. J., et al., Eur. J. Immunol., **26**, 1504-1510 (1996).
- 22. Hunte, B. E., et al., J. Immunol., **156**, 489-496 (1996).
- 23. Shibayama, H., et al., Cell. Immunol., **187**, 27-33 (1998).

jo/lpg 3/00