3050 Spruce Street, Saint Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Acid Phosphatase from wheat germ

Catalog Number **P3627** Storage Temperature –20 °C

CAS RN 9001-77-8

EC 3.1.3.2

Synonyms: APase; Orthophosphoric-monoester

phosphohydrolase (acid optimum)

Product Description

Acid phosphatases (APase) are a family of enzymes that non-specifically catalyze the hydrolysis of monoesters and anhydrides of phosphoric acid to produce inorganic phosphate at an optimum pH of 4 to 7 by the following reaction:

APase

 $\text{R-PO}_4 \ + \ \text{H}_2\text{O} \quad \xrightarrow{\text{S}^{-2}} \ \text{R-OH} \ + \ \text{HOPO}_3^{\ 2^+}$

Their function in the production, transport, and recycling of phosphate is critical for the metabolic and energy transduction processes of the cell. As a group, APases may be as important as kinases in regulatory processes.¹

Plant APases have been localized in the cytosol, vacuoles, and cell walls. One key role is phosphate acquisition to mobilize organic phosphates in the soil.² Phosphate starvation also induces APase generation. Originating from the aleurone and scutellar tissues during germination, APases hydrolyze phytins, ATP, protein phosphates, nucleotide phosphates, and have a role in general metabolic reactions.³

Wheat embryo APase consists of four isoenzymes distinguishable by chromatography. ^{4,5} One isoenzyme exhibits substrate inhibition for some substrates below pH 6, but exhibits substrate activation above pH 8. ⁴

Molecular mass: 4,6 58 kDa (gel filtration)

pH Optimum:⁷ 5.7

-

pH Range: 4 4.0-7.0

Temperature optimum:8 45 °C

Substrates:7,9

1-glycerate phosphate
1-naphthyl phosphate
2-glyceryophosphate
2,3-diglycerophosphate
glucose-1-phosphate
glucose-6-phosphate
p fruction 1.6 diphosphate

D-fructose-1,6-diphosphate *p*-nitrophenyl phosphate

K_M: ⁷ 0.27 mM (3-phosphoglycerate)

Inhibitors: 7

Hg²⁺ 100% (0.3 mM) Pb²⁺ 75% (0.13 mM) Ag²⁺ 100% (8.0 mM) Zn²⁺ 100% (12.0 mM) Cu²⁺ 100% (12.0 mM)

This product is partially purified from wheat germ and is supplied as a green-brown lyophilized powder.

Specific activity: ≥0.4 unit/mg solid

Unit definition: One unit will hydrolyze 1.0 μ mole of p-nitrophenyl phosphate per minute at pH 4.8 at 37 °C.

APase is assayed spectrophotometrically in a 1.1 ml reaction mixture containing 41 mM citrate buffer, pH 4.8 at 37 $^{\circ}$ C, 6.9 mM p-nitrophenyl phosphate, and 0.015–0.025 unit APase.

Other activity:

Lipase: ~10 units/mg solid

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

APase is soluble in cold water (0.15–0.25 unit/ml). Prepare solution immediately before use.

Storage/Stability

Store the product at -20 °C. When stored at -20 °C, the enzyme retains activity for at least one year.

References

- Vincent, J.B., et al., Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem. Sci., 17, 105-10 (1992).
- Olczak, M., et al., Plant purple acid phosphatases genes, structures, and biological function. Acta Biochim. Pol., 50, 1245-56 (2003).
- Fincher, G.B., Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 305-46 (1989).

- 4. Waymack, P.P., and van Etten, R.L., Isolation and characterization of a homogeneous isoenzyme of wheat germ acid phosphatase. Arch. Biochem. Biophys., **288**, 621-33 (1991).
- 5. Brouillard, J., and Quellet, L., Acid phosphatases of wheat germ. Chromatographic analysis. Can. J. Biochem., **43**, 1899-1905 (1965).
- 6. Schenk, G., *et al.*, A purple acid phosphatase from sweet potato contains an antiferromagnetically coupled binuclear Fe-Mn center. J. Biol. Chem., **22**, 19084-88 (2001).
- 7. Joyce, B.K., and Grisolia, S., Purification and properties of a nonspecific acid phosphatase from wheat germ. J. Biol. Chem., **235**, 2278-80 (1960).
- 8. Sugiura, Y., et al., Purification, enzymatic properties, and active site environment of a novel manganese (III)-containing acid phosphatase. J. Biol. Chem., **256**, 10664-70 (1981).
- Akiyama, T., and Yamamoto, S., Immunochemical differences in acid phosphatase isoenzymes from wheat germ. Agric. Biol. Chem., 50, 437-40 (1986).

KAD, RBG, JWM, MAM 12/07-1