Skip to Content
MilliporeSigma

901067

Sigma-Aldrich

PBDTTT-C-T

greener alternative

Synonym(s):

Poly[[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][2-(2-ethyl-1-oxohexyl)thieno[3,4-b]thiophenediyl]]

Sign Into View Organizational & Contract Pricing

Select a Size


Select a Size

Change View

About This Item

Linear Formula:
(C48H56OS6)n
CAS Number:
UNSPSC Code:
12352103
NACRES:
NA.23

description

Band gap: 1.86 eV

Quality Level

Assay

≥99% trace rare earth metals basis

form

solid

mol wt

Mw 80,000-150,000 (GPC, PS standard)

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

mp

>200 °C

solubility

chlorobenzene: soluble
chloroform: soluble
dichlorobenzene: soluble

Orbital energy

HOMO -5.11 eV 
LUMO -3.25 eV 

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product belongs to Enabling category of greener alternatives thus aligns with "Design for energy efficency". Hole transport organic materials allow perfect energy level alignment with the absorber layer and therefore efficient charge collection, are prone to degradation in ambient conditions.Click here for more information.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Need A Sample COA?

This is a sample Certificate of Analysis (COA) and may not represent a recently manufactured lot of this specific product.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

New π-conjugated polymers as acceptors designed for all polymer solar cells based on imide/amide-derivatives.
Li Y, et al.
Journal of Material Chemistry C, 4(1), 185-192 (2016)
Dual plasmonic nanostructures for high performance inverted organic solar cells.
Xuanhua Li et al.
Advanced materials (Deerfield Beach, Fla.), 24(22), 3046-3052 (2012-05-09)
Pei Cheng et al.
Advanced materials (Deerfield Beach, Fla.), 28(36), 8021-8028 (2016-06-24)
The alloy acceptor (indene-C

Articles

Novel biosensing devices, like bio-FET sensors, offer label-free analysis by detecting ionic and biomolecular charges, crucial for diagnostics and biological research.

Explore the eco-friendly potential of organic thin film transistors (OTFTs) for detecting chemical analytes, identifying viruses, and assisting in health diagnostics. This mini-review highlights challenges of achieving sustainability, safety, and biodegradability of each component of an OTFT sensor.

Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service