Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

906468

Sigma-Aldrich

SLAM-VproS-13CHD2 Methyl Labeling Kit

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352200
NACRES:
NA.12

technique(s)

bio NMR: suitable

Quality Level

shipped in

dry ice

storage temp.

−70°C

Related Categories

General description

SLAM-VproS-13CHD2 kit has 13CHD2 isotopomer precursor and contains protocol instructions for creation of isotopically-labeled proteins.

Application

For solid-state NMR applications and dynamic studies.
For regio- and/or stereo- specific isotope labelilng of Isoleucine, Leucine, Valine, and Alanine with 13CHD2 isotopomers.
SLAM-VproS-13CHD2 kit is used for stereospecific labeling of valine with 13CHD2 isotopomer. This kit has been tested with protein isotopic labeling in E. coli. It is beneficial for sample stability, which reduces sample heating because of high power decoupling when studying the side chain dynamics of proteins through solid-state NMR spectroscopy.

Packaging

This product may be available from bulk stock and can be packaged on demand. For information on pricing, availability and packaging, please contact Stable Isotopes Customer Service.

Storage Class Code

11 - Combustible Solids


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Rime Kerfah et al.
Current opinion in structural biology, 32, 113-122 (2015-04-17)
Nuclear magnetic resonance (NMR) spectroscopy is a uniquely powerful tool for studying the structure, dynamics and interactions of biomolecules at atomic resolution. In the past 15 years, the development of new isotopic labeling strategies has opened the possibility of exploiting
Silke Wiesner et al.
Current opinion in structural biology, 35, 60-67 (2015-09-26)
Intermolecular interactions are indispensible for biological function. Here we discuss how novel NMR techniques can provide unique insights into the assembly, dynamics and regulation of biomolecular complexes. We focus on applications that exploit the methyl TROSY effect and show that

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service