Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

915211

Sigma-Aldrich

Lifeink® 240

acidic type I collagen bioink, 35 mg/mL

Synonym(s):

3D Bioprinting, Bioink, Collagen

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352201
NACRES:
NA.23

Quality Level

sterility

sterile; sterile-filtered

form

viscous liquid

concentration

30-40 mg/mL (Collagen concentration)
35 mg/mL

impurities

≤10 EU/mL Endotoxin

color

colorless

pH

3.0-5.0

storage temp.

2-8°C

Application

Lifeink® 240 is a collagen based bioink that is suitable for 3D bioprinting using the FRESH printing technique. The recommended printing temperature is at 2-25 °C. It is a an acidic Type I collagen bioink at a concentration of 35 mg/ml. Lifeink® 240 is formulated in an acidic saline buffer solution. Once the collagen is printed into LifeSupport, the pH and salts concentration of the printed structure become physiological. Cells can then be seeded onto the printed structure allowing for cell adherence and cellular remodeling of the 3D bioprinted structure. This bioink possesses high print fidelity, shear-thinning, strong mechanical strength, and good cytocompatibility.

Legal Information

LifeSupport is a trademark of Advanced BioMatrix, Inc.
Lifeink is a registered trademark of Advanced BioMatrix, Inc.

Pictograms

Corrosion

Signal Word

Warning

Hazard Statements

Precautionary Statements

Hazard Classifications

Met. Corr. 1

Storage Class Code

8A - Combustible corrosive hazardous materials

WGK

WGK 1


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

In vivo remodeling of a 3D-Bioprinted tissue engineered heart valve scaffold.
Maxson E L, et al.
Bioprinting, 16, e00059-e00059 (2019)
S Fox et al.
Biomedical materials (Bristol, England), 14(4), 041001-041001 (2019-02-23)
Human autologous bioengineered skin has been successfully developed and used to treat skin injuries in a growing number of cases. In current clinical studies, the biomaterial used is fabricated via plastic compression of collagen hydrogel to increase the density and
G Filardo et al.
Bone & joint research, 8(2), 101-106 (2019-03-28)
Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop
A Lee et al.
Science (New York, N.Y.), 365(6452), 482-487 (2019-08-03)
Collagen is the primary component of the extracellular matrix in the human body. It has proved challenging to fabricate collagen scaffolds capable of replicating the structure and function of tissues and organs. We present a method to 3D-bioprint collagen using

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service