Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

923214

Sigma-Aldrich

Poly(9,9-dioctylfluorenyl-2,7-diyl)

greener alternative

Mw 50,000-150,000 by GPC

Synonym(s):

PFO

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(C29H40)n
CAS Number:
UNSPSC Code:
12352103
NACRES:
NA.23

description

PL - 426 nm (in THF)

Quality Level

mol wt

Mw 50,000-150,000 by GPC

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

band gap

2.5 eV

solubility

THF: soluble
chlorobenzene: soluble
chloroform: soluble
dichlorobenzene: soluble

λmax

376 nm in THF

Orbital energy

HOMO -5.3 eV 
LUMO -2.8 eV 

greener alternative category

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product belongs to Enabling category of greener alternatives thus aligns with "Design for energy efficency". Hole transport organic materials allow perfect energy level alignment with the absorber layer and therefore efficient charge collection, are prone to degradation in ambient conditions.Click here for more information.

Application

PFO exhibits excellent luminescent properties, making it particularly valuable as a light-emitting polymer. It is commonly used as an active material in the development of blue and green organic light-emitting diodes (OLEDs) and displays. It has the ability to confine excitons within its polymer chain, allowing for efficient energy transfer and emission of light which property is crucial in efficient OLEDs and other optoelectronic devices. It can be used as a hole transport layer or electron transport layer in organic electronic devices such as OFETs, sensors, and other thin-film devices.
PFO is a highly-fluorescent conjugated hole transport polymer material (HTM) that generates a blue light. It has wide applications in organic light-emitting diodes (OLED), organic photovoltaic (OPV), diagnostics and separation of semiconducting single walled carbon nanotubes. It was originally reported as host (and Ir(HFP)3 as the guest) in high-performance electrophosphorescent light-emitting diodes (LEDs) in 2003. PFO use in electron transport layer in OPV enables both high device fill-factor and power conversion efficiency of photovoltaic devices. PFO exhibits extraordinarily large cross-sections for two-photon excitation (as high as 105 GM19), which means that it is promising for use in dual O2 and pH mapping using two-photon-based imaging techniques. It was reported in highly stable and sensitive imaging systems (eg. intracellular fluorescence resonance energy transfer, FRET, and electrochemiluminescence immunosensor) and pH sensing. Further, a recent review outlined the capability of PFO to selectively wrap and separate semiconducting singlewalled carbon nanotubes (s-SWCNTs) as a promising simple method to disperse and separate s-SWNTs. Compared with devices based on traditional semiconductors (e.g., Si), this would enable scalable, smaller, flexible and stretchable devices with lower power consumption, and faster switching speed thanks to unique s-SWCNTs properties.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Huiyun Yang et al.
Biosensors & bioelectronics, 116, 16-22 (2018-06-01)
In this work, poly[9,9-dioctylfluorenyl-2,7-diyl] (PFO) dots is discovered to display an appealing dual enhancement effect for the electrochemiluminescence (ECL) system of N-(aminobutyl)-N-(ethylisoluminol)/hydrogen peroxide (ABEI/H2O2), which not only enhances the ECL intensity of ABEI but also catalyzes decomposition of H2O2 to
Simultaneous imaging of intracellular pH and O2 using functionalized semiconducting polymer dots
W. Xu et al
Journal of Material Chemistry B: Materials for Biology and Medicine, 4, 292-298 (2016)
Jingyi Wang et al.
Polymers, 12(7) (2020-07-17)
In the past two decades, single-walled carbon nanotubes (SWNTs) have been explored for electronic applications because of their high charge carrier mobility, low-temperature solution processability and mechanical flexibility. Semiconducting SWNTs (s-SWNTs) are also considered an alternative to traditional silicon-based semiconductors.
Solution p-doped fluorescent polymers for enhanced charge transport of hybrid organic-silicon nanowire photovoltaics
P.T. Tsai et al
Organic Electronics, 34, 246-253 (2016)
Highly Stable Core?Shell Structured Semiconducting Polymer Nanoparticles for FRET-Based Intracellular pH Imaging
B. Bao et al
Advanced Helathcare Materials, 8 (2019)

Articles

Novel biosensing devices, like bio-FET sensors, offer label-free analysis by detecting ionic and biomolecular charges, crucial for diagnostics and biological research.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service