Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

53997-U

Supelco

Ascentis® Express 90Å C8 (2.7 μm) HPLC Columns

L × I.D. 5 cm × 300 μm HPLC Capillary Column

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41115700
eCl@ss:
32110501
NACRES:
SB.52

Product Name

Ascentis® Express C8 Capillary, 2.7 μm HPLC Column, 2.7 μm particle size, L × I.D. 5 cm × 300 μm

material

stainless steel column

Quality Level

Agency

suitable for USP L7

product line

Ascentis®

feature

endcapped

manufacturer/tradename

Ascentis®

packaging

1 ea of

parameter

60 °C temp. range

technique(s)

HPLC: suitable
LC/MS: suitable
UHPLC-MS: suitable
UHPLC: suitable

L × I.D.

5 cm × 300 μm

surface area

135 m2/g

impurities

<5 ppm metals

matrix

Fused-Core particle platform
superficially porous particle

matrix active group

C8 (octyl) phase

particle size

2.7 μm

pore size

90 Å

operating pH range

2-9

application(s)

food and beverages

separation technique

reversed phase

Looking for similar products? Visit Product Comparison Guide

Recommended products

Discover LiChropur reagents ideal for HPLC or LC-MS analysis

Legal Information

Ascentis is a registered trademark of Merck KGaA, Darmstadt, Germany

Not finding the right product?  

Try our Product Selector Tool.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ugandar Reddy Inugala et al.
Journal of chromatographic science, 51(5), 453-459 (2012-10-13)
This paper describes the development of a rapid, novel, stability-indicating gradient reversed-phase high-performance liquid chromatographic method and associated system suitability parameters for the analysis of naproxcinod in the presence of its related substances and degradents using a quality-by-design approach. All
Sreenivasa Rao Chitturi et al.
Journal of pharmaceutical and biomedical analysis, 55(1), 31-47 (2011-02-15)
This paper proposes a simple and selective RP-HPLC method for the determination of process impurities and degradation products (degradants) of atazanavir sulfate (ATV) drug substance. Chromatographic separation was achieved on Ascentis(®) Express C8, (150mm×4.6mm, 2.7μm) column thermostated at 30°C under
Luigi Silvestro et al.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 878(30), 3134-3142 (2010-10-20)
Quantitative methods using LC-MS/MS allow achievement of adequate sensitivity for pharmacokinetic studies with clopidogrel; three such methods, with LLOQs as low as 5 pg/mL, were developed and fully validated according to the well established FDA 2001 guidelines. The chromatographic separations
Han Young Eom et al.
Journal of chromatography. A, 1217(26), 4347-4354 (2010-05-11)
Saikosaponins are triterpene saponins derived from the roots of Bupleurum falcatum L. (Umbelliferae), which has been traditionally used to treat fever, inflammation, liver diseases, and nephritis. It is difficult to analyze saikosaponins using HPLC-UV due to the lack of chromophores.
Federica Pellati et al.
Journal of pharmaceutical and biomedical analysis, 81-82, 126-132 (2013-05-07)
A closed-vessel microwave-assisted extraction (MAE) technique was optimized for the first time for the extraction of polyphenols from raw propolis. The results obtained by means of response surface experimental design methodology showed that the best global response was reached when

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service