Skip to Content
Merck
All Photos(2)

Key Documents

481718

Sigma-Aldrich

Iron(0) pentacarbonyl

greener alternative

>99.99% trace metals basis

Synonym(s):

Iron(0) carbonyl, Pentacarbonyliron(0)

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Fe(CO)5
CAS Number:
Molecular Weight:
195.90
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

vapor density

6.74 (vs air)

Quality Level

vapor pressure

35 mmHg ( 25 °C)
40 mmHg ( 30.3 °C)

Assay

>99.99% trace metals basis

form

liquid

autoignition temp.

122 °F

reaction suitability

core: iron
reagent type: catalyst

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

refractive index

n20/D 1.5196 (lit.)

bp

103 °C (lit.)

mp

−20 °C (lit.)

density

1.49 g/mL at 25 °C (lit.)

greener alternative category

storage temp.

2-8°C

SMILES string

[Fe].[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+]

InChI

1S/5CO.Fe/c5*1-2;

InChI key

FYOFOKCECDGJBF-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Iron(0) pentacarbonyl is a straw-yellow to brilliant orange liquid soluble in organic solvents. It is widely used as a precursor for synthesizing iron oxide nanoparticles, which have applications in the field of energy conversion and storage due to their catalytic properties and ability to enhance electron transport.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Green Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.

Application

Iron(0) pentacarbonyl can be used:
  • To fabricate Fe-based anode materials for high-performance aqueous secondary Ni−Fe batteries. It helps to achieve good safety, high power density, long term-life cycle, and high energy density.
  • As a precursor to synthesize highly stable, colloidal magnetic iron nanoparticles with narrow size distribution. These nanoparticles are potential candidates for MRI contrasting agents and magnetically separable catalysts.
  • To synthesize zero valent sustainable iron nanocatalysts for reduction reactions.

Reactant for:
  • Addition reactions
  • Decomposition via photolysis
  • Preparation of magnetic Fe onion-like fullerene micrometer-sized particles of narrow size distribution via thermal decomposition
  • Preparation of a heptanuclear iron carbonyl cluster used in catalytic hydrosilane reduction of carboxamides

  • Precursor for preparation of Fe nanoparticles for photocatalytic hydrogen evolution under highly basic conditions

Pictograms

FlameSkull and crossbones

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 1 Inhalation - Acute Tox. 2 Oral - Acute Tox. 3 Dermal - Flam. Liq. 2

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

5.0 °F - closed cup

Flash Point(C)

-15 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Tetsu Mitsumata et al.
The journal of physical chemistry. B, 116(40), 12341-12348 (2012-09-15)
A new class of magnetoelastic gel that demonstrates drastic and reversible changes in storage modulus without using strong magnetic fields was obtained. The magnetic gel consists of carrageenan and carbonyl iron particles. The magnetic gel with a volume fraction of
Caixia Zhan et al.
Dalton transactions (Cambridge, England : 2003), 39(46), 11255-11262 (2010-10-23)
By using "click" chemistry between a diazide and a diiron model complex armed with two alkynyl groups, two polymeric diiron complexes (Poly-Py and Poly-Ph) were prepared. The two polymeric complexes were investigated using infrared spectroscopy, scanning electron microscopy (SEM), transmission
Kyoko Hibi et al.
Analytical and bioanalytical chemistry, 391(4), 1147-1152 (2008-04-29)
Bacterial cold water disease, caused by Flavobacterium psychrophilum, is a serious problem in the aquaculture industry worldwide. Several methods to prevent and treat cold water disease have been studied. Although detection at the early stage of F. psychrophilum infection is
Jianfeng Jin et al.
Applied microbiology and biotechnology, 89(6), 1831-1840 (2010-12-02)
A bifunctional hydratase/alcohol dehydrogenase was isolated from the cyclohexanol degrading bacterium Alicycliphilus denitrificans DSMZ 14773. The enzyme catalyzes the addition of water to α,β-unsaturated carbonyl compounds and the subsequent alcohol oxidation. The purified enzyme showed three subunits in SDS gel
Anders Bergh et al.
Carbohydrate research, 343(10-11), 1808-1813 (2008-05-13)
Cationic iron carbonyl cyclohexadiene complexes were employed in the derivatization of the 3-OH position of unprotected and protected methyl beta-D-galactopyranosides using two different approaches, giving access to galactopyranosides with an aromatic or cyclohexadienoic functionality in this position.

Articles

Solvothermal synthesis of nanoparticles: applications from nanocircuits and nano-optical circuits to nanomagnetics and biotech.

Magnetic nanoparticles have attracted tremendous attention due to their novel properties and their potential applications in magnetic recording, magnetic energy storage and biomedicine.

Spintronics offer breakthroughs over conventional memory/logic devices with lower power, leakage, saturation, and complexity.

The properties of many devices are limited by the intrinsic properties of the materials that compose them.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service