Skip to Content
Merck
All Photos(1)

Key Documents

674516

Sigma-Aldrich

1-Hexadecanethiol

99%

Synonym(s):

Cetyl mercaptan, Hexadecyl mercaptan, Mercaptan C16

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3(CH2)15SH
CAS Number:
Molecular Weight:
258.51
Beilstein:
1748495
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Assay

99%

refractive index

n20/D 1.462 (lit.)

bp

184-191 °C/7 mmHg (lit.)

mp

18-20 °C (lit.)
20-24 °C

density

0.84 g/mL at 25 °C (lit.)

storage temp.

2-8°C

SMILES string

CCCCCCCCCCCCCCCCS

InChI

1S/C16H34S/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17/h17H,2-16H2,1H3

InChI key

ORTRWBYBJVGVQC-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

1-Hexadecanethiol (HDT) is an alkanethiol that forms a self-assembled monolayer (SAM) by linking sulfur ions with the surface atoms. The methyl groups form a network with the aqueous phase that allows the formation of hydrophobic surfaces with low surface tension.

Application

HDT functionalized gold surfaces with pentacene form a low injection barrier, which can be used to enhance the performance of pentacene organic field effect transistors (OFETs). It can also be used to immobilize silver nanoparticles (AgNPs), synthesized by reducing silver phosphine precursors.
Used to prepare thiol-functionalized 1.5 nm gold nanoparticles via a ligand exchange process with triphenylphosphine-stabilized nanoparticles. Used in the formation of hydrophobic SAMs. Due to the length of the alkane chain, the resulting monolayer is highly ordered.

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

215.6 °F - closed cup

Flash Point(C)

102 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Synthesis of silver nanoparticles using different silver phosphine precursors: formation mechanism and size control
Andrieux-Ledier A, et al.
The Journal of Physical Chemistry C, 117(28), 14850-14857 (2013)
Liping Ding et al.
Polymers, 11(12) (2019-12-15)
A versatile, facile, energy-saving, low-cost and plant-inspired self-assembly strategy was used to prepare super-hydrophobic coating in this study. Concretely, an appealing super-hydrophobicity surface was obtained by designing a molecular building block phytic acid (PA)-Fe (III) complex to anchor the substrate
Bain, C. D.; Evall, J.; Whitesides, G. M.
Journal of the American Chemical Society, 111, 7155-7155 (1989)
Monitoring of the self-assembled monolayer of 1-hexadecanethiol on a gold surface at nanomolar concentration using a piezo-excited millimeter-sized cantilever sensor
Campbell GA and Mutharasan R
Langmuir, 21(25), 11568-11573 (2005)
Synthesis and characterization of Janus gold nanoparticles.
Hyewon Kim et al.
Advanced materials (Deerfield Beach, Fla.), 24(28), 3857-3863 (2012-05-11)

Articles

Magnetic nanoparticles have attracted tremendous attention due to their novel properties and their potential applications in magnetic recording, magnetic energy storage and biomedicine.

Recent research highlights tunable properties of inorganic nanoparticles, driving interest in optoelectronics.

Self-assembled monolayers (SAMs) have diverse applications; article compares benefits of alkylthiolates on gold SAM systems.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service