Skip to Content
Merck
All Photos(2)

Key Documents

764698

Sigma-Aldrich

Poly(L-lactide)

average Mn 20,000, PDI ≤1.1

Synonym(s):

PLA, PLLA, Polylactide, L-Lactide polymer, PLA, Poly(L-Lactic acid)

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
H(C3H4O2)nOCH3
UNSPSC Code:
12162002
NACRES:
NA.23

form

solid

optical activity

[α]22/D -153°, c = 0.5% in chloroform

mol wt

average Mn 20,000

degradation timeframe

>3 years

transition temp

Tm 167-172 °C

PDI

≤1.1

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

Poly (L-lactide) is a semi-crystalline polymer which exhibits strong optical rotation and good mechanical properties. It is mostly used in the synthesis of degradable polymers which are used in orthopaedic devices, in dental applications, as scaffolds for autografted new skin, wound covers, anastomose systems and stents. They are biodegradable since the polyester backbone degrades by simple hydrolysis to form non-toxic compounds.

Application

Used in Drug Delivery including coating nanoparticles. Can be end-group functionalizated or used as a macroinitiator/block precursor.

Features and Benefits

High initial strength, good strength retention and high amount of crystallinity as much as 70% which in turn is responsible for the very slow degradation rate.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Synthesis and thermal properties of novel star-shaped poly (l-lactide)s with starburst PAMAM-OH dendrimer macroinitiator.
Zhao, Y. L., Cai, Q., Jiang, J., Shuai, X. T., Bei, J. Z., Chen, C. F., & Xi, F.
Polymer, 43(22), 5819-5825 (2002)
Chemical synthesis of polylactide and its copolymers for medical applications
Bendix, D.
Polymer Degradation and Stability, 59(1), 129-135 (1998)
Effect of poly (ethylene glycol)-block- poly (L-lactide) on the poly [(R)-3-hydroxybutyrate]/poly (L-lactide) blends
Yoon, J. S., Lee, W. S., Kim, K. S., Chin, I. J., Kim, M. N., & Kim, C.
Eur. Polymer J., 36(2), 435-442 (2000)
Wolf, Florian F.; et al.
Macromolecules, 42, 5622-5628 (2009)
Zhang, Wen-Bin; et al.
Macromolecules, 44, 2589-2596 (2011)

Articles

Professor Aran discusses engineering graphene-based materials through careful functionalization, enabling diverse applications.

Local delivery of bioactive molecules using an implantable device can decrease the amount of drug dose required as well as non-target site toxicities compared to oral or systemic drug administration.

Synthetic aliphatic polyesters dominate resorbable biomaterials in clinical use.

AliAliphatic polyesters, including polylactide and polyglycolide, are biodegradable polymers widely used in medical applications.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service