Skip to Content
Merck
All Photos(2)

Key Documents

P8791

Sigma-Aldrich

Polyglycine

mol wt 500-5,000

Synonym(s):

Glycine homopolymer

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
MDL number:
UNSPSC Code:
12352202
eCl@ss:
32160406
PubChem Substance ID:
NACRES:
NA.26

form

lyophilized powder

mol wt

500-5,000

color

white to light yellow

mp

300 °C

storage temp.

−20°C

SMILES string

NCC(O)=O

InChI

1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5)

InChI key

DHMQDGOQFOQNFH-UHFFFAOYSA-N

Gene Information

Looking for similar products? Visit Product Comparison Guide

Application

Polyglycine has been used as an external intensity standard for measuring cross polarization (CP) nuclear magnetic resonance (NMR) spectrum measurements and ion mobility mass spectrometry. It is suitable for use as a model for UV resonance Raman spectroscopy studies.

Biochem/physiol Actions

Polyglycine exists in two forms, namely the polyglycine I (PGI) with anti-parallel β-sheet structure and polyglycine II (PGII) with extended 31-helix. It is a most flexible polypeptide with minimal steric hindrance and its solubility increases in the presence of lithium ions. It is present in mammals and plants. Polyglycine stretch associated with the chloroplast membrane protein, Toc5 is essential for envelop sorting.

Preparation Note

Prepared by phosphorylation.

Other Notes

For additional technical information on polyamino acids please visit the Polyamino acid FAQ resource.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies
Bush MF, et al.
Analytical Chemistry, 84(16) (2012)
Ohki Kambara et al.
Biopolymers, 93(8), 735-739 (2010-06-03)
Poly-L-lysine is known to have three different secondary structures depending on solvent conditions because of its flexible nature. In previous work (Kambara et al., Phys Chem Chem Phys 2008, 10, 5042-5044), we observed two different types of structural changes in
Giorgio Schiró et al.
Physical chemistry chemical physics : PCCP, 12(35), 10215-10220 (2010-07-30)
Two main onsets of anharmonicity are present in protein dynamics. Neutron scattering on protein hydrated powders revealed a first onset at about 150 K and a second one at about 230 K (the so called dynamical transition). In order to
David Semrouni et al.
Journal of the American Society for Mass Spectrometry, 21(5), 728-738 (2010-03-02)
The structure of the sodiated peptide GGGGGGGG-Na(+) or G(8)-Na(+) was investigated by infrared multiple photon dissociation (IRMPD) spectroscopy and a combination of theoretical methods. IRMPD was carried out in both the fingerprint and N-H/O-H stretching regions. Modeling used the polarizable
Polyglycine acts as a rejection signal for protein transport at the chloroplast envelope
Endow JK, et al.
PLoS ONE, 11(12), e0167802-e0167802 (2016)

Articles

Humankind has utilized protein materials throughout its existence, starting with the use of materials such as wool and silk for warmth and protection from the elements and continuing with the use of recombinant DNA techniques to synthesize proteins with unique and useful properties.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service