Skip to Content
Merck
All Photos(2)

Key Documents

203033

Sigma-Aldrich

Cesium iodide

99.999% trace metals basis

Synonym(s):

Caesium iodide, Caesium monoiodide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
CsI
CAS Number:
Molecular Weight:
259.81
EC Number:
MDL number:
UNSPSC Code:
12352302
eCl@ss:
38100503
PubChem Substance ID:
NACRES:
NA.23
Assay:
99.999% trace metals basis
form:
solid

Quality Level

Assay

99.999% trace metals basis

form

solid

impurities

≤15.0 ppm Trace Metal Analysis

mp

626 °C (lit.)

density

4.51 g/mL at 25 °C (lit.)

SMILES string

[I-].[Cs+]

InChI

1S/Cs.HI/h;1H/q+1;/p-1

InChI key

XQPRBTXUXXVTKB-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

Application

Cesium iodide can be used as precursor to synthesize lead-free perovskite material, Cs2NaBiI6 (CNBI). The CNBI is highly stable and finds application in the field of solar cells, LEDs, and lasers.

It can be used to prepare brightest red emitting Cs2HfI6 scintillator which is applicable in high resolution gamma spectroscopy.

It can also be used tosynthesize Cesium based nanocrystals for the detection of ionizingradiations.

Features and Benefits

  • High quantum efficiency
  • High stability to ambient air and gas environment
Frequently used in devices such as phosphor screens for medical imaging, scintillators, calorimeters and a variety of particle detectors.

Pictograms

Health hazardEnvironment

Signal Word

Warning

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Repr. 2

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Riddhiman Sarkar et al.
Journal of magnetic resonance (San Diego, Calif. : 1997), 212(2), 460-463 (2011-09-13)
The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant
N W Marshall
Physics in medicine and biology, 54(9), 2845-2861 (2009-04-23)
This paper presents detective quantum efficiency (DQE) data measured for a range of x-ray beam qualities for two full-field digital mammography (FFDM) systems: a caesium iodide (CsI) detector-based unit and a system designed around an amorphous selenium (a-Se) x-ray detector.
G Hajdok et al.
Medical physics, 35(7), 3180-3193 (2008-08-14)
The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte
Fabian D J Brunner et al.
Optics express, 17(23), 20684-20693 (2009-12-10)
We present a versatile terahertz time-domain spectrometer which allows reflection measurements at normal incidence and double pass transmission measurements in a single experimental setup. Two different modes for transmission measurements are demonstrated for precise measurements of transparent high or low
Aldo Badano et al.
IEEE transactions on medical imaging, 28(5), 696-702 (2009-03-11)
We quantify the variation in resolution due to anisotropy caused by oblique X-ray incidence in indirect flat-panel detectors for computed tomography breast imaging systems. We consider a geometry and detector type utilized in breast computed tomography (CT) systems currently being

Articles

Colloidal quantum dots (CQDs) are semiconducting crystals of only a few nanometers (ca. 2–12 nm) coated with ligand/surfactant molecules to help prevent agglomeration.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service