Skip to Content
Merck
All Photos(3)

Key Documents

327077

Sigma-Aldrich

Silver

flakes, 10 μm, ≥99.9% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Ag
CAS Number:
Molecular Weight:
107.87
EC Number:
MDL number:
UNSPSC Code:
12141740
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥99.9% trace metals basis

form

flakes

resistivity

1.59 μΩ-cm, 20°C

particle size

10 μm

bp

2212 °C (lit.)

mp

960 °C (lit.)

density

10.49 g/cm3 (lit.)

SMILES string

[Ag]

InChI

1S/Ag

InChI key

BQCADISMDOOEFD-UHFFFAOYSA-N

General description

Silver flakes (Ag) are micro-sized flakes with a high aspect ratio. They can be used as conductive fillers that result in high conductive devices at low volumetric concentrations. Silver flakes are cost-efficient fillers compared with conventional nanowires and nanoparticles.

Application

Ag flakes can be used in the synthesis of nanoparticles, which can be used for a variety of applications such as electronics, optoelectronics, and flexible electronics.

Pictograms

Environment

Signal Word

Warning

Hazard Statements

Precautionary Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes
Matsuhisa N, et al.
Nature Materials, 16(8), 834-834 (2017)
Conductive and stretchable silver-polymer blend for electronic applications
Proceedings, 6(8), 812-816 (2016)
Enhancing the Performance of Stretchable Conductors for E-Textiles by Controlled Ink Permeation
Jin H, et al.
Advanced Materials, 29(21), 1605848-1605848 (2017)
Printable elastic conductors with a high conductivity for electronic textile applications
Matsuhisa N, et al.
Nature Communications, 6(8), 7461-7461 (2015)
Abhijeet Mishra et al.
Journal of nanoscience and nanotechnology, 13(7), 5028-5033 (2013-08-02)
The primary challenge in developing nanoparticle based enzymatic devices is to be able to chemically immobilize an enzyme, which will retain its activity or improve its function while being attached to the nanoparticle. This would be of even greater significance

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service