Skip to Content
Merck
All Photos(1)

Key Documents

398810

Sigma-Aldrich

Cobalt

rod, diam. 5.0 mm, 99.95% trace metals basis

Synonym(s):

Cobalt element

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Co
CAS Number:
Molecular Weight:
58.93
EC Number:
MDL number:
UNSPSC Code:
12141710
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.95% trace metals basis

form

rod

resistivity

6.24 μΩ-cm, 20°C

diam.

5.0 mm

bp

2900 °C (lit.)

density

8.9 g/mL at 25 °C (lit.)

SMILES string

[Co]

InChI

1S/Co

InChI key

GUTLYIVDDKVIGB-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Quantity

  • 50 mm (approximately 8.5 g)
  • 150 mm (approximately 25.5 g)

Pictograms

Health hazardExclamation mark

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Chronic 3 - Carc. 1B - Eye Irrit. 2 - Muta. 2 - Repr. 1A - Resp. Sens. 1 - Skin Sens. 1

Storage Class Code

6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

EU REACH Annex XVII (Restriction List)

CAS No.

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

S Perconti et al.
Journal of biological regulators and homeostatic agents, 27(2), 443-454 (2013-07-09)
Size-dependent characteristics of novel engineered nanomaterials might result in unforeseen biological responses and toxicity. To address this issue, we used cDNA microarray analysis (13443 genes) coupled with bioinformatics and functional gene annotation studies to investigate the transcriptional profiles of Balb/3T3
Takuya Kurahashi et al.
Inorganic chemistry, 52(7), 3908-3919 (2013-03-23)
The Co(salen)(X) complex, where salen is chiral N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine and X is an external axial ligand, has been widely utilized as a versatile catalyst. The Co(salen)(X) complex is a stable solid that has been conventionally described as a Co(III)(salen)(X) complex. Recent
D W Su et al.
Journal of nanoscience and nanotechnology, 13(5), 3354-3359 (2013-07-19)
Highly ordered mesoporous Co3O4 nanostructures were prepared using SBA-15 silica as hard templates. The mesoporous structures were characterized by X-ray diffraction, high resolution transmission electron microscopy, and N2 adsorption/desorption isotherm analysis. The results demonstrated that the as-prepared mesoporous Co3O4 has
Pushya A Potnis et al.
Cellular immunology, 282(1), 53-65 (2013-05-18)
Metal orthopedic implant debris-induced osteolysis of hip bone is a major problem in patients with prosthetic-hips. Although macrophages are the principal targets for implant-wear debris, the receptor(s) and mechanisms underlying these responses are not fully elucidated. We examined whether the
Markus Mandl et al.
Biochemical and biophysical research communications, 434(1), 166-172 (2013-04-02)
Solid tumors include hypoxic areas due to excessive cell proliferation. Adaptation to low oxygen levels is mediated by the hypoxia-inducible factor (HIF) pathway promoting invasion, metastasis, metabolic alterations, chemo-resistance and angiogenesis. The transcription factor HIF-1, the major player within this

Articles

Biomedical implants are essentially foreign substances within the human body that must survive many years’ exposure to demanding mechanical and physiological conditions. Despite these challenges, metal implants have been widely used to substitute for or rebuild hard tissues such as bones and teeth.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service