Skip to Content
Merck
All Photos(3)

Key Documents

684449

Sigma-Aldrich

[6,6]-Phenyl C61 butyric acid methyl ester

≥99%

Synonym(s):

1-[3-(Methoxycarbonyl)propyl]-1-phenyl-[6.6]C61, 3′H-Cyclopropa[1,9] [5,6]fullerene-C60-Ih-3′-butanoic acid 3′-phenyl methyl ester, PCBM, [60]PCBM

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C72H14O2
CAS Number:
Molecular Weight:
910.88
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

description

functionalized fullerene

Quality Level

Assay

≥99%

form

solid

Orbital energy

HOMO 6.1 eV 
LUMO 3.7 eV 

semiconductor properties

N-type (mobility=0.21 cm2/V·s)

SMILES string

COC(=O)CCCC2(c1ccccc1)[C]3=4c5c6c7c8c9c%10c(c%11c%12c3c%13c5c%14c%15c6c%16c7c%17c9c%18c%19c%10c%20c%11c%21c%12c%22c%13c%23c%14c%24c%15c%25c%16c%26c%17c%18c%27c%28c%19c%20c%29c%21c%30c%22c%23c%31c%24c%32c%25c%26c%27c%33c%28c%29c%30c%31c%32%33)[C]2=48

InChI

1S/C72H14O2/c1-74-11(73)8-5-9-70(10-6-3-2-4-7-10)71-66-59-52-40-32-23-14-12-13-15-18(14)27-34(32)42-43-35(27)33-24(15)26-22-17(13)20-19-16(12)21-25(23)38(40)46-44-30(21)28(19)36-37-29(20)31(22)45-47-39(26)41(33)53-55(43)64(63(66)54(42)52)67-60(53)58(47)62-51(45)49(37)56-48(36)50(44)61(57(46)59)68(71)65(56)69(62)72(67,70)71/h2-4,6-7H,5,8-9H2,1H3

InChI key

MCEWYIDBDVPMES-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

(6,6)-Phenyl C61 butyric acid methyl ester ((60) PCBM) is a methanofullerene that has a better diffusion in organic molecules than fullerenes (C60). It has a high electron mobility which allows it to be used as an electron acceptor in major electrochemical applications.
[6,6]-Phenyl C61 butyric acid methyl ester ([60]PCBM) is a methanofullerene that has a better diffusion in organic molecules than fullerenes (C60). It has high electron mobility, which allows it to be used as an electron acceptor in major electrochemical applications.

Application

(60)PCBM is an n-type semi-conductor widely used as an a electron transport material with low cost and high surface area in different energy based applications like organic photovoltaics, perovskite solar cells, field effect transistors and photodetectors.
[60]PCBM is an n-type semi-conductor with low cost and high surface area. It is widely used as an electron transport material in various energy-based applications like organic photovoltaics, perovskite solar cells, field effect transistors, and photodetectors.
Soluble n-channel organic semiconductor. For use as an n-type layer in plastic electronics, especially bulk heterojunction OFETs and photovoltaic cells (PVs).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Stability enhancement of P3HT: PCBM polymer solar cells using thermally evaporated MoO3 anode buffer layer.
Ameen MY, et al.
Physica B: Condensed Matter, 530(24), 201-207 (2018)
(60) PCBM single crystals: remarkably enhanced band-like charge transport, broadband UV-visible-NIR photo-responsivity and improved long-term air-stability.
Zhao X, et al.
Journal of Material Chemistry C, 6(20), 5489-5496 (2018)
Field-effect transistor structures on the basis of poly (3-hexylthiophene), fullerene derivatives (60) PCBM,(70) PCBM, and nickel nanoparticles.
Aleshin N, et al.
Physics of the Solid State, 58(9), 1882-1890 (2016)
Independent control of open-circuit voltage of organic solar cells by changing film thickness of MoO3 buffer layer
Kinoshita, Y.; Takenaka, R.; Murata, H.
Applied Physics Letters, 92, 243309-243309 (2008)
Improving the photo current of the (60) PCBM/P3HT photodetector device by using wavelength-matched photonic crystals.
Li S, et al.
Journal of Material Chemistry C, 2(8), 1500-1504 (2014)

Articles

Progress in bulk heterojunction photodiodes since 1995 has improved device performance and widened research scope.

Progress in bulk heterojunction photodiodes since 1995 has improved device performance and widened research scope.

Progress in bulk heterojunction photodiodes since 1995 has improved device performance and widened research scope.

Progress in bulk heterojunction photodiodes since 1995 has improved device performance and widened research scope.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service