Skip to Content
Merck
All Photos(3)

Key Documents

I4504

Sigma-Aldrich

Invertase from baker′s yeast (S. cerevisiae)

Grade VII, ≥300 units/mg solid

Synonym(s):

β-D-Fructofuranosidase, β-D-Fructofuranoside fructohydrolase, Saccharase

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
Enzyme Commission number:
EC Number:
MDL number:
UNSPSC Code:
12352204
NACRES:
NA.54

biological source

bakers yeast

Quality Level

type

Grade VII

form

solid

specific activity

≥300 units/mg solid

foreign activity

α-galactosidase (melibiase) ≤0.01%

storage temp.

−20°C

Looking for similar products? Visit Product Comparison Guide

Application

Used in the production of confectionary foods and artificial honey.

Biochem/physiol Actions

Invertase hydrolyzes sucrose into glucose and fructose yielding a colorless product, unlike acid hydrolysis which produces colored products.

Unit Definition

One unit will hydrolyze 1.0 μmole of sucrose to invert sugar per min at pH 4.5 at 55°C.

Pictograms

Health hazard

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Resp. Sens. 1

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Tatiana Q Aguiar et al.
Molecular biotechnology, 56(6), 524-534 (2014-01-24)
The repertoire of hydrolytic enzymes natively secreted by the filamentous fungus Ashbya (Eremothecium) gossypii has been poorly explored. Here, an invertase secreted by this flavinogenic fungus was for the first time molecularly and functionally characterized. Invertase activity was detected in
Bryan J Leong et al.
Science advances, 5(4), eaaw3754-eaaw3754 (2019-04-30)
Plants produce a myriad of taxonomically restricted specialized metabolites. This diversity-and our ability to correlate genotype with phenotype-makes the evolution of these ecologically and medicinally important compounds interesting and experimentally tractable. Trichomes of tomato and other nightshade family plants produce
Derek Fleming et al.
Biofilm, 2, 100037-100037 (2021-01-16)
The complexity of microbial biofilms offers several challenges to the use of traditional means of microbial research. In particular, it can be difficult to calculate accurate numbers of biofilm bacteria, because even after thorough homogenization or sonication, small pieces of
Frida I Piper et al.
Tree physiology, 37(8), 1001-1010 (2017-05-27)
Since growth is more sensitive to drought than photosynthesis, trees inhabiting dry regions are expected to exhibit higher carbohydrate storage and less growth than their conspecifics from more humid regions. However, the same pattern can be the result of different
Dmitry Kechasov et al.
Frontiers in plant science, 12, 680030-680030 (2021-07-13)
In regions with intensive agricultural production, large amounts of organic waste are produced by livestock animals. Liquid digestate from manure-based biogas production could potentially serve as fertilizer if integrated with closed horticultural irrigation systems. The aim of this experiment was

Protocols

Enzymatic Assay of Invertase

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service