Skip to Content
Merck
All Photos(3)

Key Documents

207780

Sigma-Aldrich

Copper

powder, <75 μm, 99%

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Cu
CAS Number:
Molecular Weight:
63.55
EC Number:
MDL number:
UNSPSC Code:
12141711
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99%

form

powder

resistivity

1.673 μΩ-cm, 20°C

particle size

<75 μm

bp

2567 °C (lit.)

mp

1083.4 °C (lit.)

density

8.94 g/mL at 25 °C (lit.)

SMILES string

[Cu]

InChI

1S/Cu

InChI key

RYGMFSIKBFXOCR-UHFFFAOYSA-N

General description

Copperis a versatile and widely used metal with significant importance in variousfields, particularly in catalysis and material science. In material science,copper is used in various conductive materials due to its excellent electricaland thermal conductivity, ductility, and corrosion resistance. Additionally,copper is also extensively used as a catalyst in various chemical reactions dueto its ability to facilitate electron transfer and promote redox reactions. Itoften acts as a catalyst in various reactions which include reduction, cross-couplingreactions and “click" chemistry (such as copper-catalyzed azide-alkynecycloaddition reactions.

Application

  • Photoinduced Copper-Catalyzed Aminoalkylation of Amino-Pendant Olefins.: This study explores the use of copper catalysts in photoinduced aminoalkylation reactions, highlighting the efficiency and potential applications in organic synthesis (Zhang et al., 2023).
  • Synthesis of Azoxy Compounds: from Copper Compounds to Mesoporous Silica-Encaged Ultrasmall Copper Catalysts.: This research focuses on the development of copper-based catalysts for the synthesis of azoxy compounds, emphasizing their application in sustainable chemistry (Han et al., 2023).
  • Cu-catalyzed enantioselective allylic alkylation with organolithium reagents.: The paper presents a method for enantioselective allylic alkylation using copper catalysts, providing insights into asymmetric synthesis techniques (Hornillos et al., 2017).

Pictograms

FlameEnvironment

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Flam. Sol. 1

Storage Class Code

4.1B - Flammable solid hazardous materials

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 5

1 of 5

Daniel L Priebbenow et al.
Organic letters, 15(24), 6155-6157 (2013-11-28)
A method has been developed for the preparation of N-alkynylated sulfoximines involving the copper-catalyzed decarboxylative coupling of sulfoximines with aryl propiolic acids. A range of substituents on both the sulfoximidoyl moiety and the aryl group of the propiolic acid were
Hiroshi Sato et al.
Science (New York, N.Y.), 343(6167), 167-170 (2013-12-18)
Carbon monoxide (CO) produced in many large-scale industrial oxidation processes is difficult to separate from nitrogen (N2), and afterward, CO is further oxidized to carbon dioxide. Here, we report a soft nanoporous crystalline material that selectively adsorbs CO with adaptable
Magnus Andersson et al.
Nature structural & molecular biology, 21(1), 43-48 (2013-12-10)
Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by
Seonah Kim et al.
Proceedings of the National Academy of Sciences of the United States of America, 111(1), 149-154 (2013-12-18)
Lytic polysaccharide monooxygenases (LPMOs) exhibit a mononuclear copper-containing active site and use dioxygen and a reducing agent to oxidatively cleave glycosidic linkages in polysaccharides. LPMOs represent a unique paradigm in carbohydrate turnover and exhibit synergy with hydrolytic enzymes in biomass
Huawen Huang et al.
Organic letters, 15(24), 6254-6257 (2013-11-23)
A rapid and environmentally friendly conversion of pyridine to imidazo[1,2-a]pyridines has been developed via copper-catalyzed aerobic dehydrogenative cyclization with ketone oxime esters.

Articles

Permanent magnets are an essential technology for energy conversion. Motors and generators are used to convert energy between electrical and mechanical forms.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service