Skip to Content
Merck
All Photos(1)

Key Documents

922420

Sigma-Aldrich

NanoFabTx - PEG Lipid Mix

for synthesis of PEGylated liposomes

Synonym(s):

Liposome, Liposome synthesis kit, Microfluidics, NanoFabTx liposome reagent kit, Small molecule drug formulation kit

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12161503
NACRES:
NA.23

Quality Level

application(s)

advanced drug delivery

storage temp.

−20°C

General description

NanoFabTx- PEG Lipid Mix; for synthesis of PEGylated liposomes is a ready-to-use nanoformulation lipid blend that includes lyophilized lipids and step-by-step instructions for synthesizing PEGylated liposomes for small molecule drug delivery applications. Lipid-based formulations are widely used for drug delivery and enable improved therapeutic efficacy of a range of drug types including small molecules, nucleic acids, proteins and peptides. PEGylated liposomes are capable of encapsulating both hydrophilic and lipophilic compounds and are an effective mechanism to increase the efficiency of drug delivery by prolonging the lifetime of the drug-encapsulated liposome.

Application

NanoFabTx is a collection of ready-to-use drug formulation kits, lipid mixes, and microfluidic device kits for the synthesis of nanocarriers and microcarriers for drug delivery. The kits enable users to encapsulate a wide variety of therapeutic drug molecules for targeted or extended drug delivery without the need for lengthy trial-and-error optimization. NanoFabTx provide an easy to use toolkit for encapsulating a variety of therapeutics in nanoparticles, microparticles, or liposomes. Drug encapsulated particles synthesized with the NanoFabTx kits are suitable for biomedical research applications such as oncology, immuno-oncology, gene delivery, and vaccine delivery.

Features and Benefits

  • A ready-to-use nanoformulation lipid blend for the synthesis of PEGylated liposomes
  • Step-by-step protocols (extrusion and microfluidics) developed and tested by our formulation scientists
  • Flexible synthesis tool to create uniform and reproducible liposomes
  • Optimized to make liposomes around 100 nm with low polydispersity
  • Optimized lipid blend for stealth PEGylated liposomes for small molecule encapsulation
The NanoFabTx- PEG Lipid Mix provides reagents and protocols for extrusion and microfluidics to synthesize liposomes for drug delivery research application. This reagent kit can be combined with the NanoFabTx Microfluidic - nano device kit (Cat.No. 911593) for microfluidic synthesis of PEGylated liposomes.

Comprehensive protocols for liposome synthesis are included:


  • A lipid film hydration and extrusion protocol
  • A microfluidics protocol using commercial platforms or syringe pumps
The microfluidics protocol included with this product uses the NanoFabTx device kit (911593). These kits come with the microfluidics chips, fittings, and tubing required to get started with microfluidics-based synthesis (compatible microfluidics system or syringe pump required).

Legal Information

NANOFABTX is a trademark of Sigma-Aldrich Co. LLC

Storage Class Code

11 - Combustible Solids

WGK

WGK 3


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Which polymers can make nanoparticulate drug carriers long-circulating?
Torchilin VP, et al
Advanced Drug Delivery Reviews, 16, 141?155-141?155 (1995)
Yunes Panahi et al.
Artificial cells, nanomedicine, and biotechnology, 45(4), 788-799 (2017-03-11)
Liposome is a new nanostructure for the encapsulation and delivery of bioactive agents. There are a lot of bioactive materials that could be incorporated into liposomes including cosmetics, food ingredients, and pharmaceuticals. Liposomes possess particular properties such as biocompatibility, biodegradability;
T D Madden et al.
Chemistry and physics of lipids, 53(1), 37-46 (1990-03-01)
We have shown previously that transmembrane proton gradients can be used to efficiently accumulate biogenic amines [M.B. Bally et al. (1988) Chem. Phys. Lipids 47, 97-107] and doxorubicin [L.D. Mayer, M.B. Bally and P.R. Cullis (1986) Biochim. Biophys. Acta 857
D Papahadjopoulos et al.
Proceedings of the National Academy of Sciences of the United States of America, 88(24), 11460-11464 (1991-12-15)
The results obtained in this study establish that liposome formulations incorporating a synthetic polyethylene glycol-derivatized phospholipid have a pronounced effect on liposome tissue distribution and can produce a large increase in the pharmacological efficacy of encapsulated antitumor drugs. This effect
Daryl C Drummond et al.
Cancer research, 66(6), 3271-3277 (2006-03-17)
Liposome formulations of camptothecins have been actively pursued because of the potential for significant pharmacologic advantages from successful drug delivery of this important class of anticancer drugs. We describe nanoliposomal CPT-11, a novel nanoparticle/liposome construct containing CPT-11 (irinotecan) with unprecedented

Articles

NanoFabTX kits enable precise drug delivery with lipid nanoparticles and liposomes for mRNA and nucleic acids.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service