Skip to Content
Merck
All Photos(1)

Key Documents

19-3890

Sigma-Aldrich

Methyl Orange

JIS special grade

Synonym(s):

4-[4-(Dimethylamino)phenylazo]benzenesulfonic acid sodium salt, Acid Orange 52, Helianthin, Orange III

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C14H14N3NaO3S
CAS Number:
Molecular Weight:
327.33
Colour Index Number:
13025
Beilstein:
4732884
EC Number:
MDL number:
UNSPSC Code:
12352107
PubChem Substance ID:

grade

JIS special grade

form

solid

availability

available only in Japan

pH

3.0-4.4, pink to yellow

SMILES string

[Na+].CN(C)c1ccc(cc1)\N=N\c2ccc(cc2)S([O-])(=O)=O

InChI

1S/C14H15N3O3S.Na/c1-17(2)13-7-3-11(4-8-13)15-16-12-5-9-14(10-6-12)21(18,19)20;/h3-10H,1-2H3,(H,18,19,20);/q;+1/p-1/b16-15+;

InChI key

STZCRXQWRGQSJD-GEEYTBSJSA-M

Looking for similar products? Visit Product Comparison Guide

Pictograms

Skull and crossbones

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Acute Tox. 3 Oral

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Lin Lin et al.
Nanoscale, 5(2), 588-593 (2012-12-04)
Shell@core-nanostructured TiO(2)@ZnO n-p-n heterojunction nanorods with diameter of 30 nm were successfully fabricated via a hydrothermal method. The photodegradation rate of the TiO(2)@ZnO n-p-n nanorods evaluated by photodegrading methyl orange has been demonstrated to increase three times compared to that
Ya Yang et al.
Nano letters, 13(2), 803-808 (2013-01-18)
In general, methyl orange (MO) can be degraded by an electrocatalytic oxidation process driven by a power source due to the generation of superoxidative hydroxyl radical on the anode. Here, we report a hybrid energy cell that is used for
Bin Cai et al.
Nanoscale, 5(5), 1910-1916 (2013-01-29)
Zero bandgap and water soluble sulfonated graphene (SGE) has been introduced into an n-type semiconductor photocatalytic system to fabricate a Ag@AgBr/SGE composite photocatalyst. Due to its unique conduction and valence band dispersion and low Fermi level, SGE serves as an
Yu Lim Chen et al.
Optics express, 21(6), 7240-7249 (2013-04-03)
A low-cost and efficient photocatalytic reactor for environmental treatment and green technology was presented. ZnO nanorods firmly growing on polycarbonate optical disk substrate are generally perpendicular to the substrate as the immobilized photocatalyst of the spinning disk reactor. The photocatalytic
Dong-Min Yun et al.
Water research, 47(5), 1858-1866 (2013-02-05)
Here, we demonstrated that nano zero-valent iron (nZVI) impregnated onto self-organized TiO(2) nanotube thin films exhibits both oxidation and reduction capacities in addition to the possible electron transfer from TiO(2) to nZVI. The TiO(2) nanotubes were synthesized by anodization of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service