Skip to Content
Merck
All Photos(1)

Key Documents

213748

Sigma-Aldrich

1,2-Hexadecanediol

technical grade, 90%

Synonym(s):

1,2-Dihydroxyhexadecane, 1,2-Hexadecylene glycol, 2-Hydroxycetyl alcohol

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3(CH2)13CHOHCH2OH
CAS Number:
Molecular Weight:
258.44
Beilstein:
1722206
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22
Assay:
90%

grade

technical grade

Quality Level

Assay

90%

mp

68-72 °C (lit.)

functional group

hydroxyl

SMILES string

CCCCCCCCCCCCCCC(O)CO

InChI

1S/C16H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-16(18)15-17/h16-18H,2-15H2,1H3

InChI key

BTOOAFQCTJZDRC-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

1,2-Hexadecanediol was used as reducing agent in the preparation of silver nanocrystals from a dichlorobenzene solution containing oleyl amine as a surfactant. It was also used in the preparation of:
  • Au-Fe3O4 hetero-dimers
  • iron pyrite nanocrystals
  • monodisperse iron platinum nanoparticles

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

361.4 °F - closed cup

Flash Point(C)

183 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Deepak B Thimiri Govinda Raj et al.
Molecular systems biology, 7, 541-541 (2011-10-27)
We manufactured a novel type of lipid-coated superparamagnetic nanoparticles that allow for a rapid isolation of plasma membranes (PMs), enabling high-resolution proteomic, glycomic and lipidomic analyses of the cell surface. We used this technology to characterize the effects of presenilin
Yang Sheng et al.
Journal of colloid and interface science, 374(1), 96-101 (2012-03-01)
Au-Fe(3)O(4) composite nanoparticles have received much research interest due to their promising biomedical applications. In this work, Au-Fe(3)O(4) composites with well-defined dimer-like nanostructure were synthesized via thermal decomposition route. The surfactant 1,2-hexandicandiol has proved to be critical for the formation
José M Liñeira Del Río et al.
Nanomaterials (Basel, Switzerland), 10(4) (2020-04-09)
The main task of this work is to study the tribological performance of nanolubricants formed by trimethylolpropane trioleate (TMPTO) base oil with magnetic nanoparticles coated with oleic acid: Fe3O4 of two sizes 6.3 nm and 10 nm, and Nd alloy
Sun et al.
Science (New York, N.Y.), 287(5460), 1989-1992 (2000-03-17)
Synthesis of monodisperse iron-platinum (FePt) nanoparticles by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine stabilizers is reported. The FePt particle composition is readily controlled, and the size is tunable
Yongmin Ko et al.
Nature communications, 8(1), 536-536 (2017-09-16)
The effective implantation of conductive and charge storage materials into flexible frames has been strongly demanded for the development of flexible supercapacitors. Here, we introduce metallic cellulose paper-based supercapacitor electrodes with excellent energy storage performance by minimizing the contact resistance

Articles

Prof. Randal Lee discusses iron oxide magnetic nanospheres and nanocubes design considerations for biosensing applications.

Magnetic nanoparticles have attracted tremendous attention due to their novel properties and their potential applications in magnetic recording, magnetic energy storage and biomedicine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service