Skip to Content
Merck
All Photos(2)

Key Documents

254177

Sigma-Aldrich

Copper

beads, 2-8 mm, 99.9995% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Cu
CAS Number:
Molecular Weight:
63.55
EC Number:
MDL number:
UNSPSC Code:
12141711
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.9995% trace metals basis

form

beads

resistivity

1.673 μΩ-cm, 20°C

particle size

2-8 mm

bp

2567 °C (lit.)

mp

1083.4 °C (lit.)

density

8.94 g/mL at 25 °C (lit.)

SMILES string

[Cu]

InChI

1S/Cu

InChI key

RYGMFSIKBFXOCR-UHFFFAOYSA-N

General description

Copperbeads are versatile catalysts in organic synthesis and material science because of their recyclability, sustainability, and superior catalytic performance. They are employed as heterogeneous catalysts in a range of organic reactions, including Click chemistry and cross-coupling reactions.

Application

  • Spray-dried ternary bioactive glass microspheres: This study examines the structural effects of copper doping in bioactive glass microspheres, highlighting their potential in biomedical applications for controlled drug delivery (Vecchio et al., 2024).
  • Design, Synthesis, and Characterization of Stable Copper Nanofluid: Reports on the synthesis of copper nanofluids for enhanced thermal conductivity, relevant in industrial production and various thermal applications (Bhat et al., 2024).

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Hiroshi Sato et al.
Science (New York, N.Y.), 343(6167), 167-170 (2013-12-18)
Carbon monoxide (CO) produced in many large-scale industrial oxidation processes is difficult to separate from nitrogen (N2), and afterward, CO is further oxidized to carbon dioxide. Here, we report a soft nanoporous crystalline material that selectively adsorbs CO with adaptable
Seonah Kim et al.
Proceedings of the National Academy of Sciences of the United States of America, 111(1), 149-154 (2013-12-18)
Lytic polysaccharide monooxygenases (LPMOs) exhibit a mononuclear copper-containing active site and use dioxygen and a reducing agent to oxidatively cleave glycosidic linkages in polysaccharides. LPMOs represent a unique paradigm in carbohydrate turnover and exhibit synergy with hydrolytic enzymes in biomass
Daniel L Priebbenow et al.
Organic letters, 15(24), 6155-6157 (2013-11-28)
A method has been developed for the preparation of N-alkynylated sulfoximines involving the copper-catalyzed decarboxylative coupling of sulfoximines with aryl propiolic acids. A range of substituents on both the sulfoximidoyl moiety and the aryl group of the propiolic acid were
Huawen Huang et al.
Organic letters, 15(24), 6254-6257 (2013-11-23)
A rapid and environmentally friendly conversion of pyridine to imidazo[1,2-a]pyridines has been developed via copper-catalyzed aerobic dehydrogenative cyclization with ketone oxime esters.
Magnus Andersson et al.
Nature structural & molecular biology, 21(1), 43-48 (2013-12-10)
Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by

Articles

Lanthanide ions in spectral conversion enhance solar cell efficiency via photon conversion.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service